

MONITORING YEAR 5 ANNUAL REPORT

Final

HOGAN CREEK STREAM MITIGATION PROJECT

Surry County, NC DEQ Contract 6496 DMS Project Number 94708 DWR # 20120182 USACE Action ID SAW-2011-02268 Data Collection Period: March-September 2019 Final Submission Date: October 14, 2019

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652 **PREPARED BY:**

1430 South Mint Street, Suite 104 Charlotte, NC 28203

> Phone: 704.332.7754 Fax: 704.332.3306

October 14, 2019

Mr. Matthew Reid Western Project Manager Division of Mitigation Services 5 Ravenscroft Dr., Suite 102 Asheville, NC 28801

RE: Hogan Creek Stream Mitigation Project Yadkin River Basin – CU# 03040101 Surry County, North Carolina NCEEP Project # 94708 Contract No. 6496

Dear Mr. Reid:

Wildlands Engineering, Inc. (Wildlands) has reviewed the Division of Mitigation Services (DMS) comments from the Draft Monitoring Year 5 report for the Hogan Creek Stream Mitigation Project. The following Wildlands responses to DMS's report comments are noted in italics lettering.

DMS comment; 1.2.2 Vegetation Areas of Concern and Management Activity: Please change July to June in last sentence on page 1-2. Invasive treatments occurred in June and August of 2019.

Wildlands response; Text in Section 1.2.2 has been updated to indicate that invasive treatments occurred in June and August of 2019.

DMS comment; Table 2: Please update Invasive Species Treatment dates to Jun/Aug - 2019

Wildlands response; The dates in Table 2 have been updated to June/August – 2019.

DMS comment; Please include the attached invasive species treatment log in the appendix.

Wildlands response; The invasive species treatment log has been included in the appendix.

Enclosed please find three (3) hard copies and one (1) electronic copy on CD of the Final Monitoring Report. Please contact me at 704-941-9093 if you have any questions.

Sincerely,

Kirsten Y. Stembert

Kirsten Y. Gimbert Project Manager kgimbert@wildlandseng.com

EXECUTIVE SUMMARY

The North Carolina Department of Environmental Quality (NCDEQ) Division of Mitigation Services (DMS) restored, enhanced, and preserved approximately 9,782 linear feet (LF) of stream channel at the Hogan Creek Stream Mitigation Site (Site) in Surry County, North Carolina. The restoration project was developed to fulfill stream mitigation requirements accepted by the DMS for the Upper Yadkin River Basin 8-digit Hydrologic Unit Code (HUC) 03040101. The Hogan Creek Stream Mitigation Project will net 4,994 stream mitigation credits through a combination of restoration, enhancement I and II, and preservation.

The Site is within a Targeted Local Watershed (TLW) identified in the Upper Yadkin River Basin Restoration Priority (RBRP) plan (NCDENR, 2009). The RBRP identified the Candiff Creek/Hogan Creek 14-digit HUC as a TLW due to water quality and habitat impacts from past and present agricultural practices. Agriculture is the primary land use in the watershed (41% agriculture land cover) and the RBRP identified non-forested buffers and livestock operations as major stressors to water quality. There are twenty-six permitted animal operations, and twenty-five (25%) of the watershed has non-forested riparian buffers. The site assessment phase of the project identified other stressors as well, including bank erosion, sediment deposition, disconnection of the streams and floodplains, and exotic plant species. The project was identified as an opportunity to improve water quality and aquatic and terrestrial habitats within the TLW. In addition to being within an TLW, the upper Hogan Creek subwatershed has been identified as a priority area for stream restoration and agricultural best management practices (BMPs) as part of DMS's initial Ararat River Local Watershed Planning (LWP) effort (EcoEngineering, 2008).

The final design was completed in November of 2012. Construction activities and as-built surveys were completed in December of 2014. Planting of the Site took place in March of 2015. Baseline monitoring efforts began in May of 2015, and monitoring year 1 efforts began in October of 2015. The region experienced an unusually high amount of precipitation during fall/winter 2015. The storm events damaged several areas on Hogan Creek Reach 1 and Reach 2 that were subsequently repaired in December of 2015. Beginning in 2016, monitoring has been conducted annually with Monitoring Year (MY) 5 activities completed in September of 2019.

To address previously noted areas of bank erosion, a repair along Hogan Creek was completed in March 2019. Approximately 980' of live lifts were installed and a constructed riffle was repaired on Hogan Reach 2. Transplants were used where possible, and disturbed areas were replanted with bare roots, live stakes and permanent/temporary seeding. Construction began in February 2019 and finished up March 2019. Following the MY4 Interagency Review Team (IRT) credit release site walk, an additional year of monitoring was requested to further assess the repairs.

The Hogan Creek Stream Mitigation Project is on track to meet monitoring success criteria for vegetation, geomorphology, and hydrology performance standards. The MY5 vegetation survey resulted in an average stem density of 391 planted stems per acre. The Site is meeting the final success criterion of 260 stems per acre, with five out of six plots (83%) individually meeting this requirement. The MY5 vegetation monitoring and visual assessment revealed that the treatments are working to significantly reduce the areas of invasive plant populations. The geomorphic surveys and visual assessments indicate that project streams appear stable and functioning as intended. The hydrology performance standard of two recorded bankfull events in separate monitoring years was met in MY2 for Hogan Creek and UT2.

HOGAN CREEK STREAM MITIGATION PROJECT

Year 5 Monitoring Report

TABLE OF CONTENTS

Section 1:	PROJECT OVERVIEW	1-1
	roject Goals and Objectives	
	Ionitoring Year 5 Data Assessment	
1.2.1	Vegetation Assessment	1-2
1.2.2	Vegetation Areas of Concern and Management Activity	1-2
1.2.3	Stream Assessment	1-3
1.2.4	Stream Areas of Concern and Management Activity	1-3
1.2.5	Hydrology Assessment	1-3
1.3 N	1onitoring Year 5 Summary	1-3
Section 2:	METHODOLOGY	2-1
Section 3:	REFERENCES	3-1

APPENDICES

Appendix A	General Tables and Figures
F ¹	Desta an Mistalia A A

- Figure 1 Project Vicinity Map
- Figure 2 Project Component/Asset Map
- Table 1Project Components and Mitigation Credits
- Table 2Project Activity and Reporting History
- Table 3Project Contacts Table
- Table 4Project Baseline Information and Attributes
- Table 5Monitoring Component Summary

Appendix B Visual Assessment Data

- Figures 3.0-3.3Integrated Current Condition Plan ViewTable 6a-dVisual Stream Morphology Stability Assessment TableTable 7Vegetation Condition Assessment Table
 - Stream Photographs
 - Stream Repair Photographs
 - Vegetation Photographs

Appendix C Vegetation Plot Data

- Table 8Vegetation Plot Criteria Attainment
- Table 9CVS Vegetation Plot Metadata
- Table 10 Planted and Total Stem Counts

Appendix D Morphological Summary Data and Plots

- Table 11a-cBaseline Stream Data Summary
- Table 12
 Morphology and Hydraulic Summary (Dimensional Parameters Cross-Section)
- Table 13a-c
 Monitoring Data Stream Reach Data Summary
 - Cross-Section Plots with Annual Overlays
 - Longitudinal Profiles with Annual Overlays
 - Pebble Count Plots with Annual Overlays

Appendix E	Hydrology Summary Data and Plots
Table 14	Verification of Bankfull Events
	Monthly Rainfall Data

Appendix F Invasive Species Treatment Logs

Section 1: PROJECT OVERVIEW

The Site was implemented under a design-bid-build contract in Surry County, NC. The Site is located in the Yadkin River Basin; eight-digit Hydrologic Unit Code (HUC) 03040101 and the 14-digit HUC 03040101110060 (Figure 1). Located in the Piedmont physiographic province (NCGS 2004), the project watershed primarily includes agricultural land cover. The drainage area for the lower end of Hogan Creek is 1,514 acres. Hogan Creek is a main tributary to the Yadkin River in the Upper Yadkin River Basin. The Site is located approximately 2 miles south of NC 268 on Miller Gap Road, which bisects the project at the triple box culvert over Hogan Creek. A vicinity map is included in Appendix A as Figure 1.

The NCDEQ DMS restored, enhanced, and preserved approximately 9,782 LF of Hogan Creek and three unnamed tributaries (UTs), provided livestock fencing and alternative water sources to keep livestock out of the streams, removed invasive plant species across the project, established native riparian buffer, and preserved relatively un-impacted forested streams. The restoration project was developed to fulfill stream mitigation requirements accepted by the DMS for the Upper Yadkin River Basin.

Mitigation work within the Site included restoring and enhancing 4,109 LF and preserving 5,673 LF of stream. The Hogan Creek Mitigation Project will net 4,994 stream mitigation credits through a combination of restoration, enhancement I and II, and preservation. The final design was completed in November of 2012. Construction activities and as-built surveys were completed in December of 2014. Planting of the Site took place in March of 2015. The baseline monitoring efforts began in May of 2015 and monitoring year 1 efforts began in October of 2015. The region experienced an unusually high amount of precipitation during fall/winter 2015. The storm event damaged several areas on Hogan Creek Reach 1 and Reach 2 that were repaired in December of 2015. The monitoring year 5 activities were completed in September of 2019.

More detailed information related to the project activity, history, and contacts can be found in Appendix A, Tables 1 and 2. Directions and a map of the Site are provided in Figure 1. Project components are illustrated in the Project Component Map (Figure 2) while Table 1 outlines the project component and mitigation credit information for the Site. This report documents the results of the MY5 efforts.

1.1 Project Goals and Objectives

Prior to construction activities, non-forested buffers and livestock operations were identified as major stressors to water quality within the watershed. The site assessment phase of the project identified other stressors as well, including bank erosion, sediment deposition, disconnection of the streams and floodplains, and exotic plant species. The majority of the project area was utilized as a cattle operation for over fifty years. Cattle accessed Hogan Creek and the downstream reach of UT2 exacerbating bank erosion and allowing direct nutrient and fecal inputs to the streams. Deforested riparian buffers and levee construction along Hogan Creek and UTs also contributed to channel degradation. Table 11 in Appendix D present the pre-restoration conditions in detail.

This mitigation site is providing numerous ecological benefits within the Yadkin River Basin. The project goals identified in the Mitigation Plan (Confluence, 2012) include:

- Improve water quality in Hogan Creek and the UTs through reductions in sediment and nutrient inputs from local sources;
- Create conditions for dynamic equilibrium of water and sediment movement between the supply reaches and project reaches;
- Promote floodwater attenuation and secondary functions associated with more frequent and extensive floodwater contact times;

- Improve in-stream habitat by increasing the diversity of bedform features;
- Enhance and protect native riparian vegetation communities; and
- Reduce fecal, nutrient, and sediment loads to project streams by promoting and implementing livestock best management practices.

The project objectives have been defined as follows:

- Restoration of the dimension, pattern, profile of 684 LF of Hogan Creek Reach 1, 962 LF of Hogan Creek Reach 2, 555 LF of UT2, and 292 LF of UT3;
- Restoration of the dimension and profile (Enhancement I) of 1,200 LF of Hogan Creek Reach 1;
- Limited channel work coupled with livestock exclusion and/or invasive species control (Enhancement II) on 66 LF of UT1 and 350 LF of UT2;
- Livestock exclusion fencing and alternative water source installations;
- Invasive plant species control measures across the entire project wherever necessary; and
- Preservation of approximately 5,673 LF relatively un-impacted forested streams in a permanent conservation easement.

1.2 Monitoring Year 5 Data Assessment

Annual monitoring was conducted from March to September of 2019 to assess the condition of the project. The stream restoration success criteria for the Site follows the approved performance standards presented in the Hogan Creek Stream Mitigation Plan (Confluence, 2012).

1.2.1 Vegetation Assessment

A total of 6 vegetation monitoring plots were established during the baseline monitoring within the project easement using standard 10 by 10 meter or 5 by 20 meter plots. Please refer to Figures 3.0-3.3 in Appendix B for the vegetation monitoring locations. The final vegetation success criterion is the survival of 260 planted stems per acre in the riparian corridor along restored and enhanced reaches at the end of year five of the monitoring period.

The MY5 vegetation survey was completed in August 2019. The data indicate an average stem density of 391 planted stems per acre for the Site. The Site is meeting the final requirement of 260 stems per acre, with 5 out 6 plots (83%) individually meeting this requirement. Vegetation Plot 2 did not the requirement with a density of 202 stems per acre.

A majority of the living planted stems (98%) scored a vigor of 3 or 4, indicating that they are likely to survive. The planted stem mortality was approximately 9% of the MY4 stem count of 452 stems per acre, some of which had occurred as a result of damage from the stream bank repair work. Approximately 2% of the planted stems scored a vigor of 2, indicating fair plant health with some damage present. Observed damage was from vine strangulation, suffocation from dense herbaceous cover, or other unknown factors. The average stem height for all plots is approximately 11.6 feet. Please refer to Appendix B for vegetation plot photographs and Appendix C for vegetation data tables.

1.2.2 Vegetation Areas of Concern and Management Activity

MY5 visual assessments indicate that some invasive plant populations continue to persist within the riparian buffer. These species include: kudzu (*Pueraria montana*), Chinese privet (*Ligustrum sinense*), Japanese honeysuckle (*Lonicera japonica*), multiflora rose (*Rosa multiflora*), and Lespedeza (*Sericea Lespedeza*). DMS has contracted with a provider for ongoing invasive species treatments which will continue through closeout. In MY5, invasive species treatment which occurred in June and August of 2019, significantly reduced areas of invasive plant populations along Hogan Creek and within the left

floodplain of UT2 and UT2B. Approximately 1.3% of the easement acreage continues to be affected by invasive species. Current vegetation areas of concern are shown in Figure 3.0-3.3 of Appendix B.

1.2.3 Stream Assessment

Morphological surveys for MY5 were conducted in July 2019. The surveyed longitudinal profile data illustrates that bedform features are maintaining lateral and vertical stability for the majority of the surveyed reaches. Though profile dimensions for Hogan Creek and UT2 show little change between MY4 and MY5. There is one area along Hogan Creek Reach 2 (station 37+25) that is experiencing some localized bed scour downstream of a log vane and bank erosion within the meander bend. Please refer to Appendix D for longitudinal profiles with annual overlays and Table 13a-c for stream reach data summaries.

Overall cross-section data throughout the Site, including areas where recent bank repair work was conducted along Hogan Creek, are displaying stable bankfull dimensions. When occurring, adjustments are minor in comparison to baseline conditions and seem to be trending towards increased stability. Changes include deposition in the floodplain, the formation of point bars, the deepening of pools, and the narrowing of riffles. Visual observations conducted along UT2 indicate overall stability with some sediment deposition observed downstream of the bridge. Similarly, UT1 and UT3 appear stable and functioning as intended. Please refer to Appendix D for cross-section plots with annual overlays and Table 12 for morphology and hydraulic summary.

The MY5 riffle pebble counts conducted for cross-sections 1, 5, and 6 indicate similar or coarser sediment size distribution as compared to MY0. Additionally, sediment size for cross-section 3 has returned to a coarser distribution similar to MY0-MY1 as a result of the stream repairs at the beginning of MY5. Refer to Appendix D for pebble count plots with annual overlays.

1.2.4 Stream Areas of Concern and Management Activity

In previous monitoring years, several significant stream areas of concern were noted on Hogan Creek Reach 1 and Reach 2 near stations 10+20, 10+80, 16+50, 20+10, 23+20, 26+70, 31+30, 34+00, and 37+70. To address previously noted areas of bank erosion, construction repairs on Hogan Creek began in January 2019 and concluded in March 2019. The repairs appear to be performing well and livestake vegetation already becoming well established on the banks. These repairs have decreased bank erosion along Reach 1 of Hogan Creek from 9% in MY4 to 1% in MY5 and along Hogan Creek Reach 2, from 10% in MY4 to 2% in MY5. Please refer to a photolog of the repair work in Appendix B. Additional areas of concern are depicted on the current condition plan view Figures 3.0-3.3 and Table 6 in Appendix B.

1.2.5 Hydrology Assessment

A bankfull event was documented for Hogan Creek and UT2 on March 14, 2019 based on the visual observation of wrack lines and crest gage measurements. Monthly rainfall data indicate higher than the normal rainfall amounts occurred during the months of February and June 2019. Project performance standards state that two bankfull flow events must be documented on restoration reaches within the five-year monitoring period and must occur in separate years. Therefore, the performance standard has been met in MY5 with at least five documented bankfull events for each reach. Refer to Appendix E for hydrologic data and graphs.

1.3 Monitoring Year 5 Summary

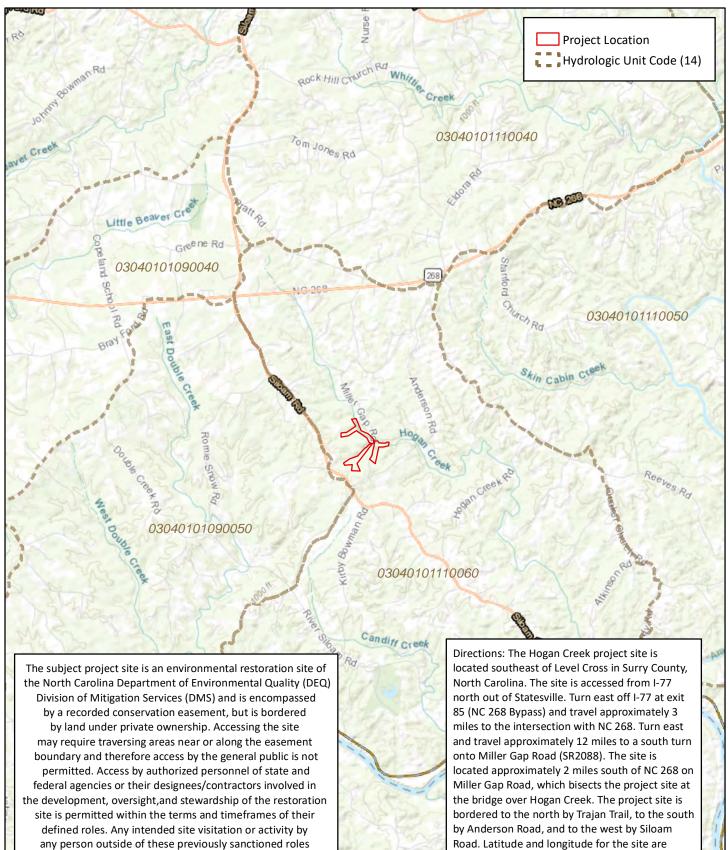
The Hogan Creek Stream Mitigation Project is on track to meet monitoring success criteria for vegetation, geomorphology, and hydrology performance standards. The MY5 vegetation survey resulted in an average stem density of 391 planted stems per acre and is meeting the final success criterion of 260 stems per acre with five out of six plots (83%) individually meeting this requirement. The MY5

vegetation monitoring and visual assessment revealed that the treatments are working to significantly reduce the areas of invasive plant populations. Geomorphic surveys and visual assessments indicate that project streams including recently stabilized areas along Hogan Creek Reach 1 and Reach 2, appear stable and functioning as intended. The hydrology performance standard of two recorded bankfull events in separate monitoring years has been met for Hogan Creek and UT2. An additional year of monitoring (MY6) will occur in 2020.

Summary information and data related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these annual monitoring reports can be found in the Mitigation Plan documents available on DMS's website. All raw data supporting the tables and figures in the appendices are available from DMS upon request.

Section 2: METHODOLOGY

The stream monitoring methodologies utilized in 2019 are based on standard guidance and procedures documents (Rosgen 1996 and USACE 2003). Geomorphic data were collected following the standards outlined in The Stream Channel Reference Site: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). All Integrated Current Condition Mapping was recorded using a Trimble handheld GPS with sub-meter accuracy and processed using Pathfinder and ArcGIS. Planted woody vegetation is being monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2008). Crest gages were installed near surveyed riffle cross-sections and monitored semi-annually.


Section 3: REFERENCES

Confluence Engineering, PC. 2012. Hogan Creek Stream Mitigation Plan. NCEEP, Raleigh, NC.

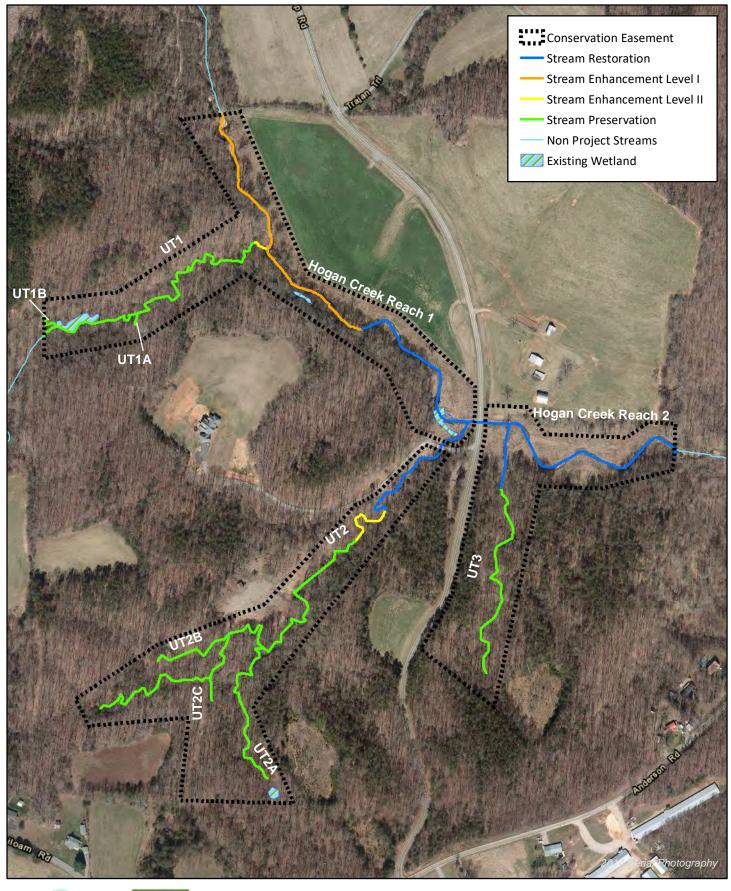
- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- EcoEngineering. 2008. Technical Memorandum Task 2, Upper Yadkin Basin Local Watershed Plan.
- Harrelson, Cheryl C; Rawlins, C.L.; Potyondy, John P. 1994. *Stream Channel Reference Sites: An Illustrated Guide to Field Technique.* Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, Michael T., Peet, Robert K., Steven D., Wentworth, Thomas R. 2008. CVS-EEP Protocol for Recording Vegetation Version 4.2. Retrieved from: http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-2.pdf
- North Carolina Climate Retrieval and Observations Network of the Southeast Database (NCCRONOS). 2019. State Climate Office of North Carolina. Version 2.7.2. NC-SR-2-Dobson 2.3 SE. Station ID Dobson 2.3 SE. Accessed September 2019.
- NCDENR. 2009. Upper Yadkin River Basin Restoration Priorities. Retrieved from https://deq.nc.gov/about/divisions/mitigation-services/dms-planning/watershed-planningdocuments/yadkin-river-basin
- North Carolina Geological Survey (NCGS). 2004. Physiography of North Carolina. Map compiled by the Division of Land Resources. Raleigh.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- United States Army Corps of Engineers (USACE), 2003. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC.

APPENDIX A. General Tables and Figures

36.321609 N and 80.602389 W, respectively. Figure 1 Project Vicinity Map Hogan Creek Stream Mitigation Project

> DMS Project No. 94708 Monitoring Year 5 - 2019

WILDLANDS



and activites requires prior coordination with DMS.

0.5 1 Mile

0

ul cre

WILDLANDS

400 Feet

Ŵ

0

Figure 2 Project Component/Asset Map Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

Table 1. Project Components and Mitigation Credits

Hogan Creek Stream Mitigation Project

DMS Project No. 94708 Monitoring Year 5 - 2019

			Mitiga	ation Credit Summ	aries ¹			
	Stream	Riparian Wetland	Non-Riparian Wetland	Buffer	Nitrogen Nutr	ient Offset	Ph	osphorous Nutrient Offset
Overall Credit	4,994.000	N/A	N/A	N/A	N//	4		N/A
			Pr	roject Component	s ¹			
Project Component or Reach ID	Stationing	Pre-project Footage or Acreage	Restoration Footage or Acreage	Restoration Level	Restoration or Rest Equiv.	Mitigation Ratio	Mitigation Credits	Notes
Hogan Reach 1	10+00 - 22+00	1,331	1,200	P2	EI	1:1	1,200.000	-
Hogan Reach 1	22+00 - 28+84	797	684	P2	R	1:1	684.000	Crossing was removed from total
Hogan Reach 2	29+35 - 38+97	876	962	P2	R	1:1	962.000	-
UT1,1A, 1B	Upstream of 10+00	1,485	1,485	Preservation	Р	5:1	297.000	-
UT1	10+00 - 10+66	66	66	P3	EII	2.5:1	26.400	-
UT2, 2A, 2B,2C	Upstream of 6+50	3,225	3,225	Preservation	Р	5:1	645.000	-
UT2	6+50 - 10+00	370	350	P3	EII	2.5:1	140.000	-
UT2	10+00 - 15+55	633	555	P2	R	1:1	555.000	Crossing was removed from total
UT3	Upstream of 9+40	963	963	Preservation	Р	5:1	192.600	-
UT3	9+40 - 12+32	260	292	P2	R	1:1	292.000	-
			Length	and Area Summa	ations ¹			
Restoration Level	Stream (Linear Feet)	Riparian Wet	land (acres)	Non-riparian Wetland (acres) Buffer (Square		are feet)		Upland (acres)
		Riverine	Non-Riverine					
		-						
Restoration	2,493	-	-	-	-	-	-	_
Enhancement	·	-	-	-	-	-	-	-
Enhancement I	1,200							
Enhancement II	416							
Creation		-	-	-			-	-
Preservation	5,673	-	-	-			-	-
High Quality	-	-	-	-			-	-
Preservation	-	-	-	-			-	-

N/A - Not Applicable

¹ Project components and mitigation credits reverted back to Mitigation Plan asset totals as requested by IRT.

Table 2. Project Activity and Reporting History

Hogan Creek Stream Mitigation Project DMS Project No. 94708

Monitoring Year 5 - 2019

Activity or Delive	rable	Data Collection Complete	Completion or Delivery
Mitigation Plan		October-2011	February-2012
Final Design – Construction Plans		October-2011	November-2012
Construction		N/A	December-2014
Temporary S&E Mix Applied		N/A	December-2014
Permanent Seed Mix Applied		N/A	December-2014
Containerized, bare root and B&B plantings f	or reach/segments	N/A	March-2015
Baseline Monitoring Document (Year 0)	Vegetation Survey	May-2015	August 201E
baseline Monitoring Document (rear o)	Stream Survey	June-2015	August-2015
Stream Repair/Maintenance		N/A	December-2015
Year 1 Monitoring	Vegetation Survey	October-2015	January-2016
	Stream Survey December-2		January-2010
Invasive Species Treatment		May-2016	May-2016
Supplemental Planting		N/A	January-2016
Invasive Species Treatment		September-2016	September-2016
Year 2 Monitoring	Vegetation Survey	October-2016	November-2016
	Stream Survey	June-2016	November-2010
Year 3 Monitoring	Vegetation Survey	August-2017	December-2017
real 3 Monitoring	Stream Survey	July-2017	December-2017
Invasive Species Treatment		N/A	June/August -2018
Year 4 Monitoring	Vegetation Survey	August-2018	November-2018
real 4 Monitoring	Stream Survey	June-2018	NOVEITIBEI-2018
Stream Repair/Maintenance		N/A	March-2019
Invasive Species Treatment		N/A	June/August -2019
Year 5 Monitoring	Vegetation Survey	August-2019	November-2019
	Stream Survey	July-2019	14076111061-2019
Year 6 Monitoring	Vegetation Survey	2020	2020
	Stream Survey	2020	2020

N/A - Not Applicable

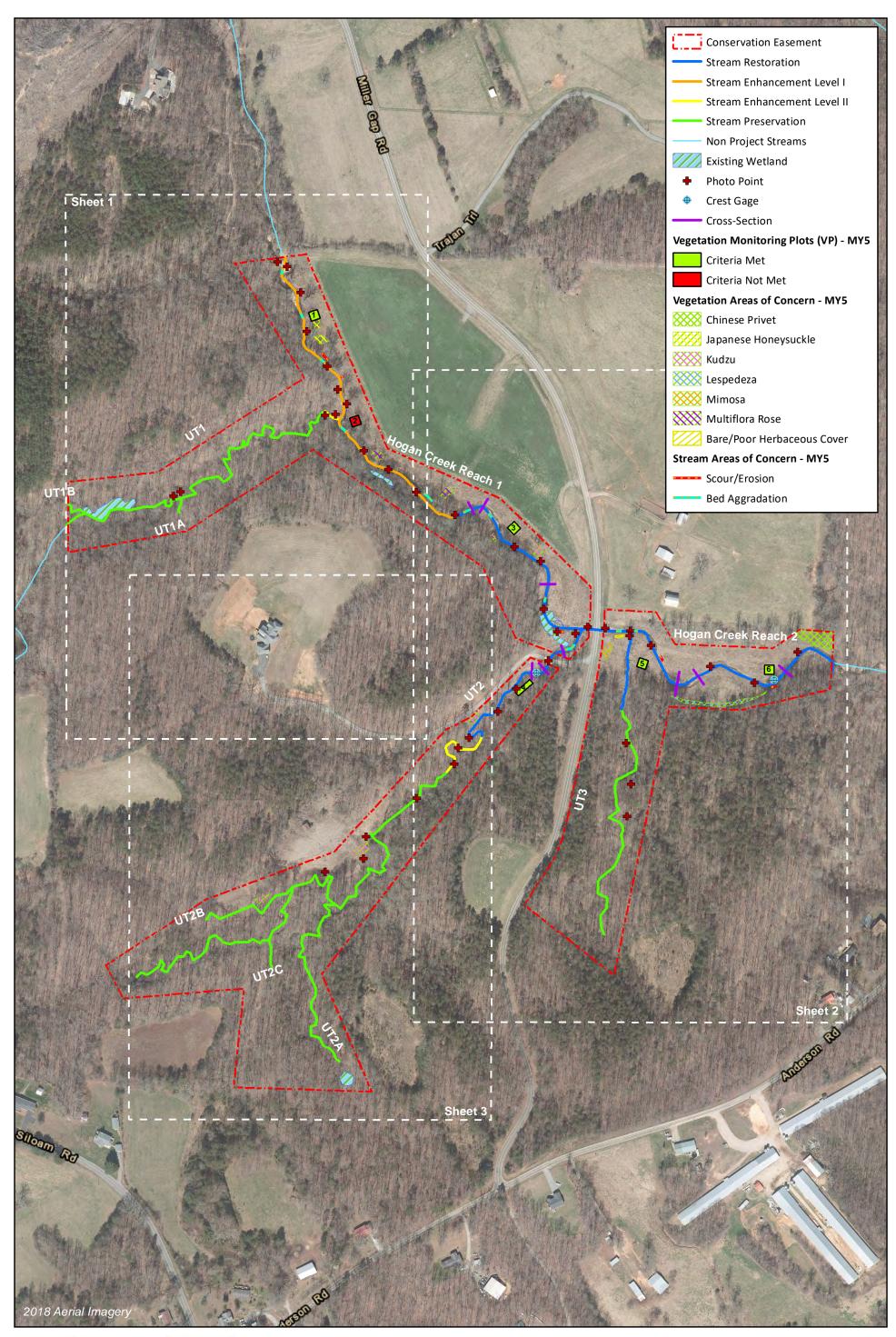
Table 3. Project Contacts Table

Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

Designer	Confluence Engineering, PC
-	16 Broad Street
	Asheville, NC 28801
Primary Project Design POC	Andrew Bick 828-606-0306
Construction Contractor	Carolina Environmental Contracting, Inc.
	150 Pine Ridge Road
	Mount Airy, NC 27030
Construction Contractor POC	Wayne Taylor 336-341-6489
Survey Contractor	Turner Land Surveying, PLLC
	PO Box 41023
	Raleigh, NC 27629
Survey Contractor POC	David Turner 919-623-5095
Planting Contractor	Keller Environmental, LLC
	7921 Haymarket Lane
	Raleigh, NC 27615
Planting Contractor POC	Jay Keller 919-749-8259
Seeding Contractor	Carolina Environmental Contracting, Inc.
	150 Pine Ridge Road
	Mount Airy, NC 27030
Seeding Contractor POC	Wayne Taylor 336-341-6489
Seed Mix Sources	Green Resources 336-855-6363
Nursery Stock Suppliers	Foggy Mountain Nursery 336-384-5323
Monitoring Performers	Wildlands Engineering, Inc.
	1430 South Mint Street, Ste 104
	Charlotte, NC 28205
	704.332.7754
Monitoring POC	Kirsten Gimbert 704-332-7754

Table 4. Project Baseline Information and Attributes

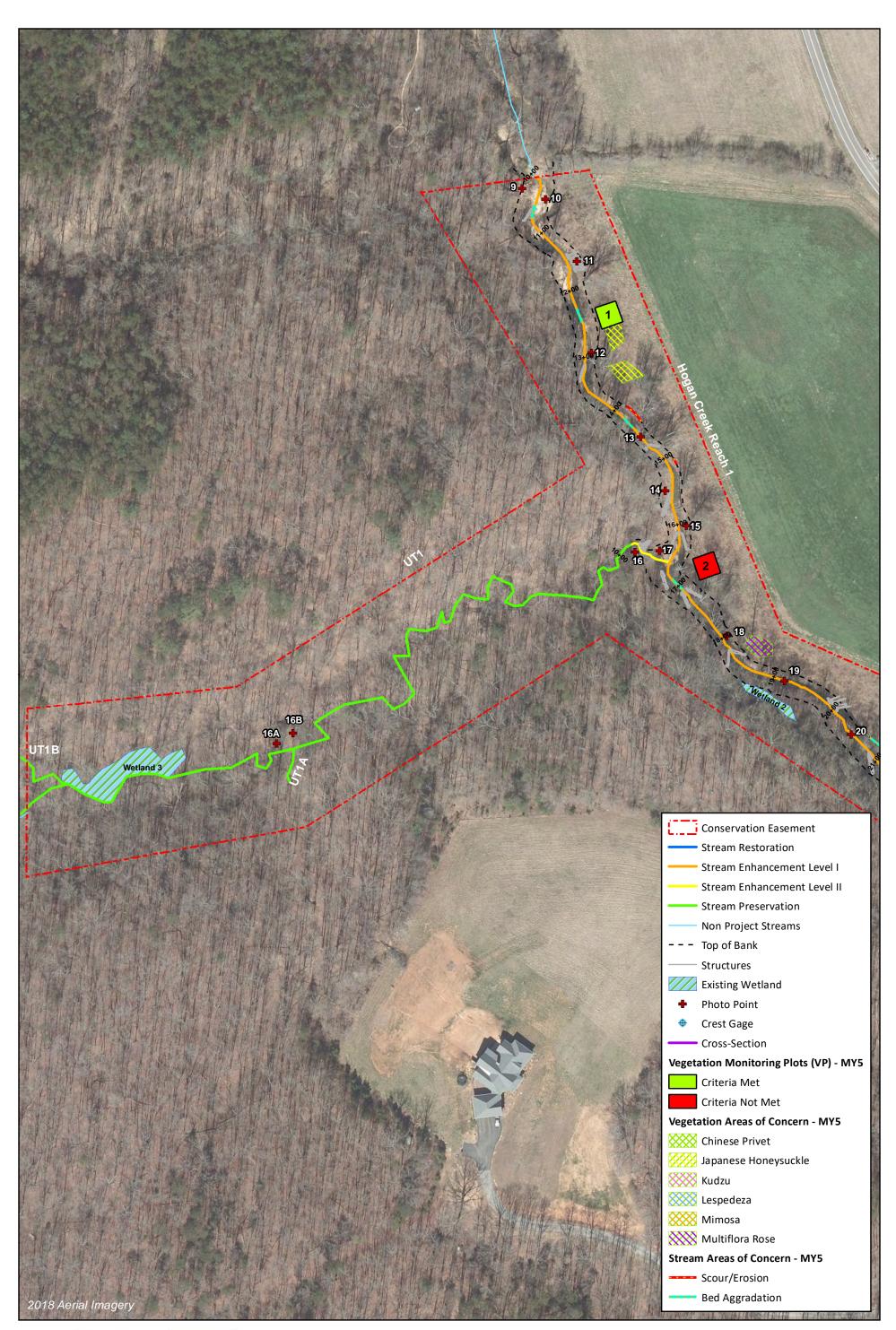
Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019


	Pro	ject l	nformation						
Project Name			Hogan Creek Stre	am Mitigatio	n Project				
•				ann whtigatio	innoject				
County Project Area (acres)			Surry 36						
				00000					
Project Coordinates (latitude and longitude)	B 1 1 1 1 1		36.321609 N, 80.0						
	Project Water	sned		ormation					
Physiographic Province			Piedmont						
River Basin			Yadkin						
USGS Hydrologic Unit 8-digit			03040101						
USGS Hydrologic Unit 14-digit			03040101110060						
DWR Sub-basin			Pee Dee River Su	1	02				
Project Drainage Area (acres)			1,514 ac (2.37 mi	-)					
Project Drainage Area Percentage of Impervious Area			0.40%						
CGIA Land Use Classification	Deech C		Managed Herbac		Broadleaf Dec	iduous Fore	est Land		
	Reach S	umm	ary Informatio	on					
Parameters	Hogan Creek Reach 1	Hoga	n Creek Reach 2	Main St	em UT1	Main S	tem UT2	UT3	
Length of Reach Post Construction (LF)	1,961		992	1,4	42	2,	869	1,227	
Valley classification (Rosgen)	VIII		VIII	V	1		VI	VI	
Drainage area (acres)	1,479		1,514	6	0	1	81	18	
NCDWQ stream identification score	40		37	3			1.5	32.5	
NCDWQ Water Quality Classification	С		С	C	2		С	С	
Morphological Description (Rosgen stream type)	C4		C4	E4	b	E	4b	G4	
Evolutionary trend	C-F		C-F	Eb	-G	E	b-G	Eb-G	
Underlying mapped soils	CsA		CsA	CsA,	FsE	F	sE	FsE	
Drainage class	well drained	v	vell drained	well dr			drained	well drained	
Soil Hydric status	not hydric		not hydric	not h			hydric	not hydric	
Slope	0.007		0.005	0.0				0.030	
FEMA classification	AE		AE	Not in			n SFHA	Not in SFHA	
Native vegetation community	Felsic Mesic Forest	Felsi	ic Mesic Forest	Felsic Me	esic Forest Felsic Mesic Forest		esic Forest	Felsic Mesic Forest	
Percent composition of exotic invasive vegetation	0		0	C)		0	0	
	Wetland	Sumr	nary Informat	ion	r				
Parameters	Wetland 1		Wetlan	d 2		Wetland 3		Wetland 4	
Size of Wetland (acres)	0.09		0.02).02		0.13		0.10	
Wetland Type	riparian non-riverine		riparian non	-riverine	ripar	ian non-rive	erine	riparian non-riverine	
Mapped Soil Series	CsA		CsA and	FsE	(CsA and FsE		CsA and FsE	
Drainage class	well drained		well dra			vell drained		well drained	
Soil Hydric Status	not hydric		not hyd			not hydric		not hydric	
Source of Hydrology	Creek (oxbow)		Toe se			Toe seep		Impoundment	
Hydrologic Impairment	none		none			none		none	
	Dist. Small Stream/		Dist. Small S		Dict	Small Strea	m/	lione	
Native vegetation community								Herbaceous	
	Narrow FP Forest		Narrow FP	Forest	Nai	row FP For	est		
Percent composition of exotic invasive vegetation	0		0			0		0	
	Regula	tory	Consideration	s					
Regulation			Applical	ble?	Resol	ved?	Supporting Documentation		
Waters	of the United States – Section	on 404	Y	Y Y			USACE Act	ion ID # SAW-2011-02268	
Waters	of the United States – Section	on 401	Y		Y		NCDWR # 20120182		
	Endangered Spec	ies Act	Y		Y		CE Approved 9/30/11		
	Historic Preservati	on Act	N		N/	A		-	
Coastal Zone Management Act (CZMA)/ Coas			N		N/			-	
	FEMA Floodplain Comp		Y		Y		LOM	R Submitted 5/2015	
							LOIVI		
N/A Not-applicable	Essential Fisheries H	navitat	N		N/	А		-	

N/A Not-applicable

Table 5. Monitoring Component SummaryHogan Creek Stream Mitigation ProjectDMS Project No. 94708Monitoring Year 5 - 2019

Parameter	Monitoring Feature			Frequency			
ratameter	Wolltoning reature	Hogan Creek Reach 1	Hogan Creek Reach 2	UT1	UT2	UT3	Frequency
Dimension	Riffle XS	2	2		2		Annual
Dimension	Pool XS	1	1		1		Annual
Pattern/Profile	Longitudinal Profile	1500	1000		675		Annual
Substrate	100 Pebble Count	2	2				Annual
Hydrology	Crest Gage		1		1		Semi-Annual
Vegetation	Vegetation Plots	3	2		1		Annual
Visual Assessment	Project Site	Y	Y	Y	Y	Y	Semi-Annual
Reference Photos	Permanent Photo Points	18	6	3	10	4	Annual


APPENDIX B. Visual Assessment Data

4

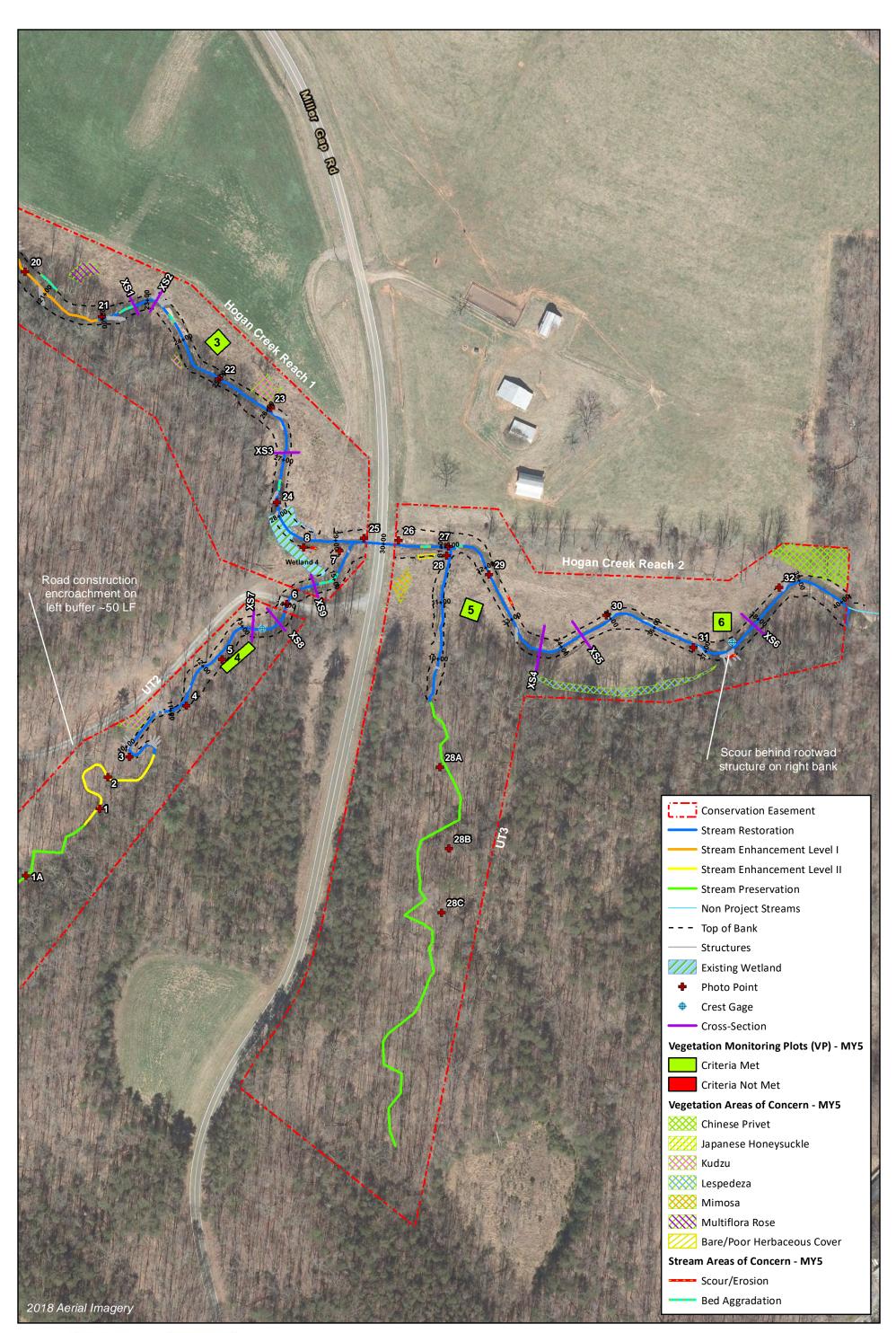


Figure 3.0 Integrated Current Condition Plan View Map (Key) Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

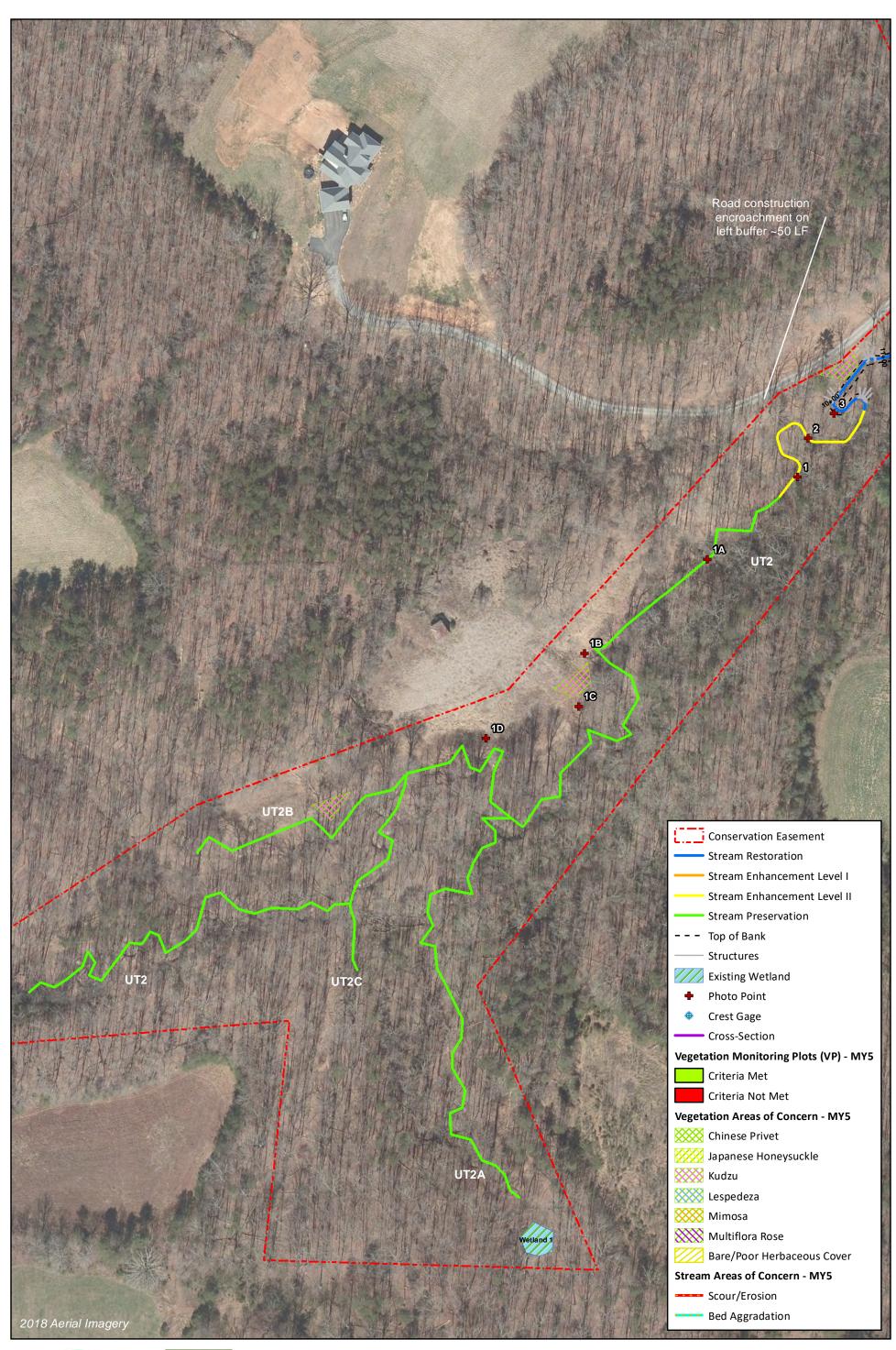

WILDLANDS O 125 250 Feet

Figure 3.1 Integrated Current Condition Plan View Map (Sheet 1 of 3) Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

WILDLANDS 0 150 300 Feet

Figure 3.2 Integrated Current Condition Plan View Map (Sheet 2 of 3) Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

WILDLANDS NG 0 125 250 Feet

Figure 3.3 Integrated Current Condition Plan View Map (Sheet 3 of 3) Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

Table 6a. Visual Stream Morphology Stability Assessment Table Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

Hogan Creek Reach 1 (Assessed Length : 1,961 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			8	190	90%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	14	14			100%			
1. Bed	2 Maandar Dool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	13	13			100%			
	S. Meander Poor Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	13	13			100%			
	A Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	13	13			100%			
	4. marweg Position	2. Thalweg centering at downstream of meander (Glide)	13	13			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			3	50	99%	0	0	N/A
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	N/A
		Bank slumping, calving, or collapse			0	0	100%	0	0	N/A
	1		1	Totals	3	50	99%	0	0	N/A
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	15	15			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	12	12			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	15	15			100%			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	15	15			100%			

Table 6b. Visual Stream Morphology Stability Assessment TableHogan Creek Stream Mitigation ProjectDMS Project No. 94708Monitoring Year 5 - 2019

Hogan Creek Reach 2 (Assessed Length : 992 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			2	30	97%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	4	6			67%			
1. Bed	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	4	5			80%			
	S. Meander Poor Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	4	5			80%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	4	5			80%			
	4. marweg Position	2. Thalweg centering at downstream of meander (Glide)	4	5			80%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			2	36	98%	0	0	N/A
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	N/A
	1		1	Totals	2	36	98%	0	0	N/A
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	6			83%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	1	1			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	5			80%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	5	6			83%			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	5	6			83%			

Table Gc.Visual Stream Morphology Stability Assessment TableHogan Creek Stream Mitigation ProjectDMS Project No. 94708Monitoring Year 5 - 2019

UT2 (Assessed Length : 930 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			1	40	96%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	12	14			86%			
1. Bed	2 Maandar Dool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	13	13			100%			
	3. Meanuer Poor condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	13	13			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	13	13			100%			
	4. maiweg rosition	2. Thalweg centering at downstream of meander (Glide)	13	13			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	Y Channel Sub-Category In Vertical Stability (Riffle and Run units) 1. Aggradation - Bar formation/growth sufficient for the second	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
		Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	6			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	2	2			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	6	6			100%			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	6	6			100%			

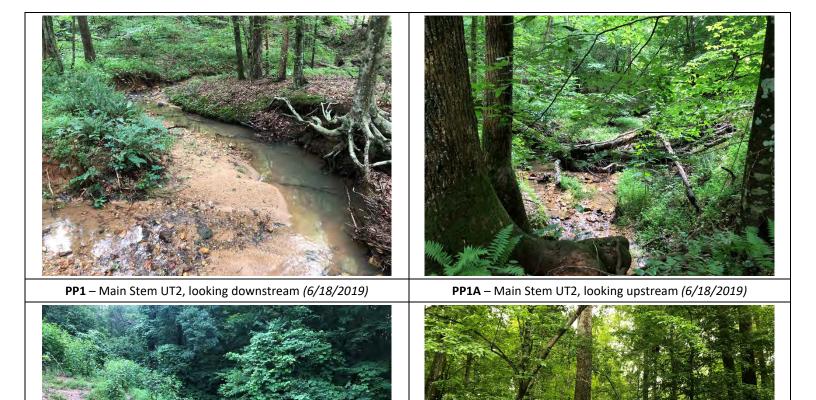
Table 6d. Visual Stream Morphology Stability Assessment TableHogan Creek Stream Mitigation ProjectDMS Project No. 94708Monitoring Year 5 - 2019

UT3 (Assessed Length : 275 feet)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and				0	0	100%			
	Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	4	4			100%			
1. Bed	2 Maandar Deal Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	4	4			100%			
	S. Meander Poor Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	4	4			100%			
	4 Thalwey Position	1. Thalweg centering at upstream of meander bend (Run)	4	4			100%			
	4. malweg i ostaon	2. Thalweg centering at downstream of meander (Glide)	4	4			100%			
							-			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	1. Vertical Stability (Riffe and Run units) point bars) .	0	0	100%	0	0	100%			
	1		1	Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	1	1			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	1	1			100%			
	3. Bank Protection		1	1			100%			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	1	1			100%			

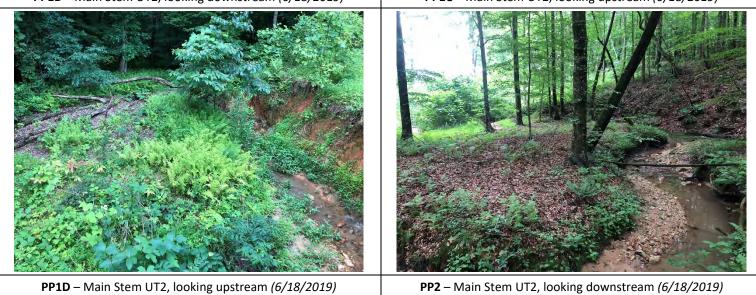
Table 7. Vegetation Condition Assessment Table

36

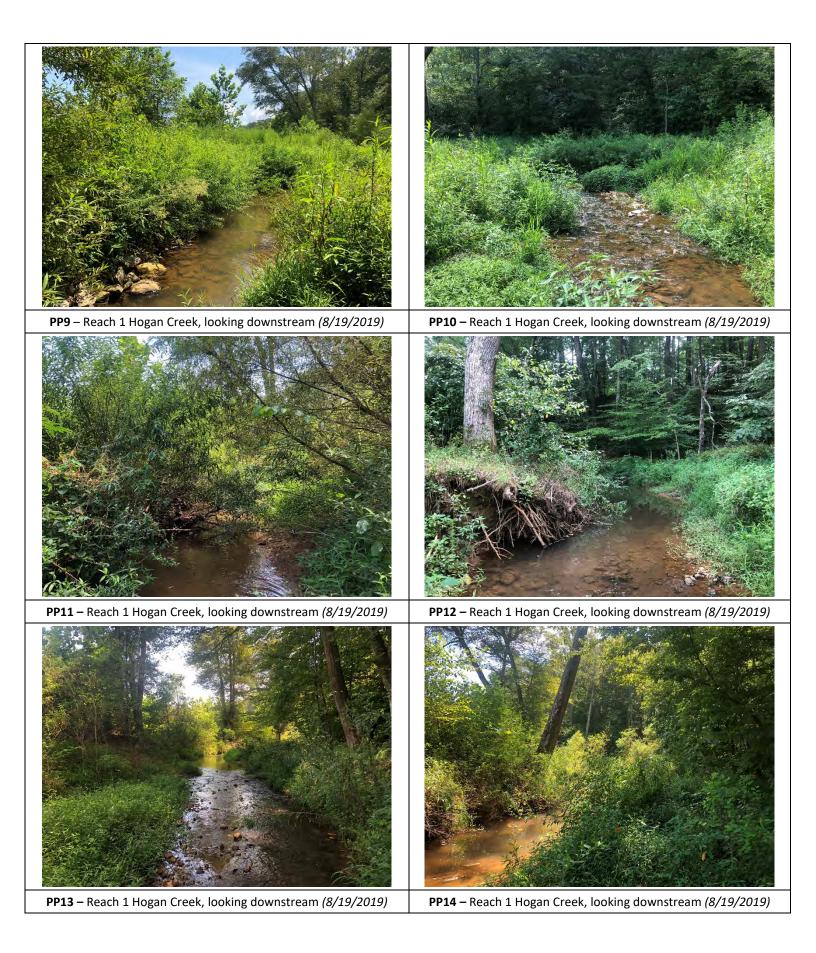

Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

Planted Acreage	6.7					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Cross Hatch Yellow	2	0.01	0.1%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	N/A	0	0.00	0.0%
Total					0.01	0.1%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	N/A	0	0.00	0.0%
	Cumulative Total				0.01	0.1%

Easement Acreage


Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	1000 SF	Cross Hatch Green	15	0.45	1.3%
5. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	none	N/A	0	0.00	0.0%

Stream Photographs

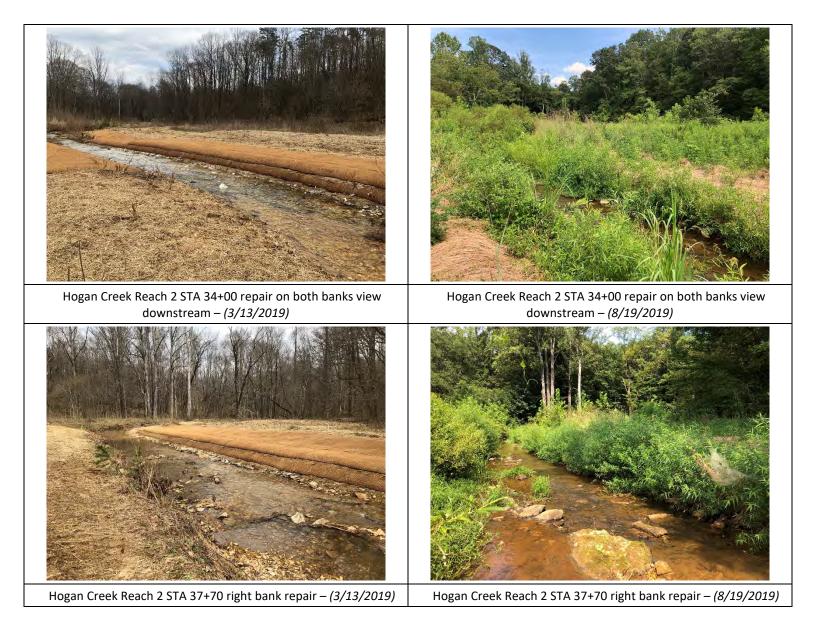


PP1B – Main Stem UT2, looking downstream (6/18/2019)

PP1C – Main Stem UT2, looking upstream (6/18/2019)

PP30 – Reach 2 Hogan Creek, looking downstream (6/18/2019)

PP31 – Reach 2 Hogan Creek, looking downstream (6/18/2019)



PP32 – Reach 2 Hogan Creek, looking downstream (6/18/2019)

Stream Repair Photographs

Vegetation Photographs

APPENDIX C. Vegetation Plot Data

Table 8. Vegetation Plot Criteria Attainment

Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

Plot	MY5 Success Criteria Met (Y/N)	Tract Mean
1	Y	
2	N	
3	Y	83%
4	Y	0370
5	Y	
6	Y	

Table 9. CVS Vegetation Plot MetadataHogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

Database Name	cvs-eep-entrytool-v2.3.1 Hogan MY5.mdb
Database Location	L:\Active Projects\005-02152 Hogan Monitoring\Monitoring\MY5 (2019)\Vegetation Assessment
Computer Name	MIMI-PC
File Size	61771776
DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT	
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	94708
Project Name	Hogan Creek
Description	
River Basin	
Length(ft)	
Stream-to-edge Width (ft)	
Area (sq m)	
Required Plots (calculated)	
Sampled Plots	6
Required Plots (calculated)	6
Sampled Plots	6

Table 10. Planted and Total Stem Counts

Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

									(Current	Plot D	ata (MY	′5 20 19)						
			947	08-01-0	0001	947	08-01-0	002	947	08-01-0	003	947	08-01-0	004	947	08-01-0	005	947	08-01-0	006
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	т
Acer rubrum	red maple	Tree																		
Betula nigra	river birch	Tree	3	3	143			11	1	1	3	4	4	4			1			
Diospyros virginiana	common persimmon	Tree													3	3	3	5	5	5
Fraxinus pennsylvanica	green ash	Tree	2	2	2	2	2	2	2	2	2	3	3	3	1	1	1			
Juglans nigra	black walnut	Tree															2			
Lindera benzoin	northern spicebush	Shrub			10															
Liriodendron tulipifera	tuliptree	Tree			15															
Nyssa sylvatica	blackgum	Tree																2	2	2
Pinus taeda	loblolly pine	Tree																		
Platanus occidentalis	American sycamore	Tree	2	2	2	3	3	3	1	1	1	8	8	8						1
Prunus serotina	black cherry	Tree																		
Quercus alba	white oak	Tree																		
Quercus lyrata	overcup oak	Tree	1	1	1				4	4	4	1	1	1	3	3	3	5	5	5
Quercus phellos	willow oak	Tree													2	2	2			
		Stem count	8	8	173	5	5	16	8	8	10	16	16	16	9	9	12	12	12	13
		size (ares)		1			1			1			1			1			1	
		size (ACRES)		0.0247			0.0247			0.0247			0.0247			0.0247			0.0247	
		Species count	4	4	6	2	2	3	4	4	4	4	4	4	4	4	6	3	3	4
		Stems per ACRE	324	324	7001	202	202	647	324	324	405	647	647	647	364	364	486	486	486	526

											Annua	l Means								
			M	YO (201	L5)	М	Y1 (201	5)	М	Y2 (201	.6)	М	Y3 (201	.7)	M	Y4 (201	.8)	M	Y5 (201	.9)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree			1			7			1			5						
Betula nigra	river birch	Tree	10	10	10	10	10	149	10	10	169	10	10	165	10	10	193	8	8	162
Diospyros virginiana	common persimmon	Tree							11	11	11	9	9	9	10	10	10	8	8	8
Fraxinus pennsylvanica	green ash	Tree	17	17	17	14	14	14	15	15	15	13	13	13	13	13	13	10	10	10
Juglans nigra	black walnut	Tree			1									2			3			2
Lindera benzoin	northern spicebush	Shrub																		10
Liriodendron tulipifera	tuliptree	Tree						70			62			64			19			15
Nyssa sylvatica	blackgum	Tree	12	12	12	12	12	12	2	2	2	2	2	2	2	2	2	2	2	2
Pinus taeda	loblolly pine	Tree									3			2			15			
Platanus occidentalis	American sycamore	Tree	13	13	13	14	14	17	14	14	20	14	14	15	14	14	31	14	14	15
Prunus serotina	black cherry	Tree			27			41			33									1
Quercus alba	white oak	Tree			2			1			1									
Quercus lyrata	overcup oak	Tree	13	13	13	15	15	15	17	17	17	16	16	16	16	16	16	14	14	14
Quercus phellos	willow oak	Tree	6	6	6	4	4	4	1	1	1	1	1	1	2	2	2	2	2	2
		Stem count	71	71	102	69	69	330	70	70	335	65	65	294	67	67	304	58	58	240
		size (ares)		6			6			6			6			6			6	
		size (ACRES)		0.148			0.148			0.148			0.148			0.148			0.148	
		Species count	6	6	10	6	6	10	7	7	12	7	7	11	7	7	10	7	7	10
		Stems per ACRE	479	479	688	465	465	2226	472	472	2259	438	438	1983	452	452	2050	391	391	1619

Color for Density Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% Volunteer species included in total

PnoLS: Number of planted stems excluding live stakes P-all: Number of planted stems including live stakes T: Total stems

APPENDIX D. Morphological Summary Data and Plots

Table 11a. Baseline Stream Data Summary

Hogan Creek Stream Mitigation Project DMS Project No.94708 Monitoring Year 5 - 2019

Hogan Creek - Reach 1 (1,532 feet)

Parameter	Gage	Reg	gional (Curve		Pre-E	xisting	Conditio	on			Refer	ence R	each Da	ita			Design			Мо	nitoring	g Baselin	e	
		LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Med	Max	Min	Mean	Med	Max	SD	n
Dimension and Substrate - Riffle Only																									
Bankfull Width (ft)		-	-	-	21.5	-	25.7	29.7	-	-	27.2	-	30.4	33.6	-	-	22.5	23.3	24.0	22.8	24.2	24.2	25.6	-	2
Floodprone Width (ft)					178.0	-	220.0	246.0	-	-	72.1	-	72.3	72.5	-	-	100.0	150.0	200.0	>100	>100	>100	>100	-	2
Bankfull Mean Depth (ft)		-	-	-	2.0	-	1.9	2.1	-	-	1.9	-	2.0	2.2	-	-	1.8	1.9	2.2	1.7	1.8	1.8	1.8	-	2
Bankfull Max Depth (ft)	N/A				2.5	•	2.7	3.2	-	-	2.4	1	2.5	2.7	-	-	2.5	2.6	2.8	2.7	2.8	2.8	2.9	-	2
Bankfull Cross Sectional Area (ft ²)	N/A	-	-	-	45.1	-	48.6	59.3	-	-	50.8	-	61.6	72.4	-	-	40.6	44.1	47.6	41.4	42.7	42.7	43.9	-	2
Width/Depth Ratio					10.3	-	13.6	14.9	-	-	14.5	-	15.0	15.6	-	-	12.1	12.3	12.5	12.6	13.8	13.8	14.9	-	2
Entrenchment Ratio					8.3	-	8.6	8.3	-	-	2.7	-	2.7	2.7	-	-	4.4	6.5	8.3	>3.9	>4.2	>4.2	>4.4	-	2
Bank Height Ratio					1.3	•	1.3	1.4	-	-	1.0	1	1.0	1.1	-	-	1.0	1.0	1.0	1.0	1.0	1.0	1.0	-	2
Profile																									
Riffle Length (ft)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	37.17	58.9	-	98.4	-	8
Riffle Slope (ft/ft)					0.010	-	0.024	0.055	-	-	0.019	-	0.020	0.021	-	-	0.007	0.010	0.013	0.002	0.010	-	0.018	-	8
Pool Length (ft)	N/A				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	25.0	62.6	-	88.0	-	13
Pool Max depth (ft)					4.0	-	4.3	4.7	-	-	3.4	-	3.5	3.5	-	-	4.0	4.0	4.0	2.5	3.2	-	4.1	-	13
Pool Spacing (ft)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	73.3	120.9	-	200.08	-	12
Pattern																									
Channel Beltwidth (ft)					44.0	-	65.0	117.0	-	-	86.0	-	86.0	86.0	-	-	48.0	88.0	126.0	63.0	96.5	101.0	121.0	24.9	4
Radius of Curvature (ft)					20.0	-	29.0	52.0	-	-	19.6	-	22.7	25.8	-	-	67.0	73.0	101.0	70.0	76.5	75.0	86.0	6.8	4
Rc:Bankfull width (ft/ft)	N/A				0.9	-	1.1	1.8	-	-	0.7	-	0.8	0.9	-	-	3.0	3.1	4.2	2.9	3.2	3.1	3.6	N/A	N/A
Meander Wavelength (ft)					133.0	-	297.0	479.0	-	-	81.0	-	81.0	81.0	-	-	133.0	311.0	325.0	165.0	263.7	306.0	320.0	85.7	3
Meander Width Ratio					2.0	-	2.5	3.9	-	-	3.2	-	3.2	3.2	-	-	2.1	3.8	5.3	2.6	4.0	4.2	5.0	N/A	N/A
Substrate, Bed, and Transport parameters																									
Ri% / Ru% / P% / G% / S%							-											-				-			
SC% / Sa% / G% / C% / B% / Be%							-											-			0%,3.5	5%,96%,	,0.5%,0%	,0%	
d16 / d35 / d50 / d84 / d95 (mm)	N/A						-											-			14	4, 19, 23	3, 41, 56		
Reach Shear Stress (competency) lb/f	N/A						-											-				-			
Max part size (mm) mobilized at bankful	l						-											-				-			
Stream Power (transport capacity) W/m ²							-											-				-			
Additional Reach Parameters																									
Rosgen Classification							C4						C4					C4				C4	ŧ		
Bankfull Velocity (fps)		-	-	-			-											-				-			
Bankfull Discharge (cfs)		-	-	-			-																		
Valley length (ft)							2,52	5					4,73	0								1,29	Э4		
Channel Thalweg length (ft)							2,76	2					327	'				2,897				1,53	32		
Sinuosity (ft)	N/A						1.12	2					1.26	5				1.15				1.1	.8		
Water Surface Slope (Channel) (ft/ft)	N/A						0.00	54					0.012	27				0.0071				0.00	163		
BF slope (ft/ft)							0.00	71					0.010)1				0.0062				0.00	67		
Bankfull Floodplain Area (acres)							-						-					-				-			
% of Reach with Eroding Banks							-						-												
Channel Stability or Habitat Metric							-						-												
Biological or Other							-						-												

N/A - Not Applicable

- Information Unavailable

Table 11b. Baseline Stream Data Summary

Hogan Creek Stream Mitigation Project DMS Project No.94708 Monitoring Year 5 - 2019

Hogan Creek - Reach 2 (1,085 feet)

Parameter	Gage	Reg	ional C	Curve		Pre-E	xisting	Conditio	on			Refer	ence R	each Da	ta			Design			M	onitorir	ıg Baseli	ne	
		LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Med	Max	Min	Mean	Med	Max	SD	n
Dimension and Substrate - Riffle Only																									
Bankfull Width (ft)		-	-	-	21.5	-	25.7	29.7	-	- 1	27.2	-	30.4	33.6	-	-	22.5	23.3	24.0	24.2	24.5	24.5	24.7	-	2
Floodprone Width (ft)					178.0	-	220.0	246.0	-	-	72.1	-	72.3	72.5	-	-	100.0	150.0	200.0	>100	>100	>100	>100	-	2
Bankfull Mean Depth (ft)		-	-	-	2.0	-	1.9	2.1	-	-	1.9	-	2.0	2.2	-	-	1.8	1.9	2.2	1.9	2.1	2.1	2.3	-	2
Bankfull Max Depth (ft)	N/A				2.5	-	2.7	3.2	-	- 1	2.4	-	2.5	2.7	-	I	2.5	2.6	2.8	3.2	3.4	3.4	3.6	-	2
Bankfull Cross Sectional Area (ft ²)	N/A	-	-	-	45.1	-	48.6	59.3	-	- 1	50.8	-	61.6	72.4	-	-	40.6	44.1	47.6	45.2	50.9	50.9	56.6	-	2
Width/Depth Ratio					10.3	-	13.6	14.9	-	- 1	14.5	-	15.0	15.6	-	-	12.1	12.3	12.5	10.8	11.9	11.9	13.0	-	2
Entrenchment Ratio					8.3	-	8.6	8.3	-	-	2.7	-	2.7	2.7	-	I	4.4	6.5	8.3	>4.0	>4.1	>4.1	>4.1	-	2
Bank Height Ratio					1.3	-	1.3	1.4	-	- 1	1.0	-	1.0	1.1	-	I	1.0	1.0	1.0	1.0	1.0	1.0	1.0	-	2
Profile																									
Riffle Length (ft)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	95.63	111.62	-	130.25	-	5
Riffle Slope (ft/ft)					0.010	-	0.024	0.055	-	-	0.019	-	0.020	0.021	-	-	0.007	0.010	0.013	0.004	0.005	-	0.007	-	5
Pool Length (ft)	N/A				-	-	-	-	-	- '	-	-	-	-	-	-	-	-	-	43.7	68.8	-	117.1	-	5
Pool Max depth (ft)					4.0	-	4.3	4.7	-	-	3.4	-	3.5	3.5	-	-	4.0	4.0	4.0	3.80	4.73	-	5.8	-	5
Pool Spacing (ft)					-	-	-	-	-		-	-	-	-	-	-	-	-	-	164.1	208.4	-	253.1	-	4
Pattern																									
Channel Beltwidth (ft)					44.0	-	65.0	117.0	-	- 1	86.0	-	86.0	86.0	-	-	48.0	88.0	126.0	84.0	114.0	117.0	141.0	28.6	3
Radius of Curvature (ft)					20.0	-	29.0	52.0	-	-	19.6	-	22.7	25.8	-	-	67.0	73.0	101.0	69.0	73.3	74.0	75.0	2.8	5
Rc:Bankfull width (ft/ft)	N/A				0.9	-	1.1	1.8	-	-	0.7	-	0.8	0.9	-	-	3.0	3.1	4.2	2.8	3.0	3.0	3.1	N/A	N/A
Meander Wavelength (ft)					133.0	-	297.0	479.0	-	-	81.0	-	81.0	81.0	-	-	133.0	311.0	325.0	292.0	307.0	301.0	328.0	18.7	3
Meander Width Ratio					2.0	-	2.5	3.9	-	- 1	3.2	-	3.2	3.2	-	-	2.1	3.8	5.3	3.4	4.7	4.8	5.8	N/A	N/A
Substrate, Bed, and Transport parameters																									
Ri% / Ru% / P% / G% / S%							-											-					-		
SC% / Sa% / G% / C% / B% / Be%							-											-			0%,	3%,9%,8	39%, 0%,	0%	
d16 / d35 / d50 / d84 / d95 (mm)	N/A						-											-			1	13, 24, 2	2, 35, 49)	
Reach Shear Stress (competency) lb/f ²	N/A						-											-					-		
Max part size (mm) mobilized at bankfull							-											-					-		
Stream Power (transport capacity) W/m ²							-											-					-		
Additional Reach Parameters																									
Rosgen Classification							C4						C4					C4				0	24		
Bankfull Velocity (fps)		-	-	•			-											-					-		
Bankfull Discharge (cfs)		-	-	-			-																		
Valley length (ft)							2,52	5					4,73	0									94		
Channel Thalweg length (ft)							2,76	2					327	'				2,897				1,0	085		
Sinuosity (ft)	N/A						1.12	2					1.26	5				1.15				1.	37		
Water Surface Slope (Channel) (ft/ft)	11/7						0.006	64					0.012	27				0.0071				0.0	050		
BF slope (ft/ft)							0.007	'1					0.010)1				0.0062				0.0	053		
Bankfull Floodplain Area (acres)							-						-					-							
% of Reach with Eroding Banks							-						-												
Channel Stability or Habitat Metric							-						-												
Biological or Other							-						-												

N/A - Not Applicable

- Information Unavailable

Table 11c. Baseline Stream Data Summary

Hogan Creek Stream Mitigation Project DMS Project No.94708 Monitoring Year 5 - 2019

UT2 (675 feet)

Parameter	Gage	Re	gional (Curve		Pre-	Existing	; Condit	ion			Re	eferenc	e Reach	Data			Design			Mon	itoring	Baselin	ie	
		LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Med	Max	Min	Mean	Med	Max	SD	n
Dimension and Substrate - Riffle Only																									
Bankfull Width (ft)		-	-	-	-	-	8.2	-	-	-	-	-	7.1	-	-	-	-	9.0	-	6.5	7.1	7.1	7.6	-	2
Floodprone Width (ft)					-	-	66.0	1	-	-	-	-	15.0	-	-	-	-	30.0	1	21	24.9	24.9	28.8	-	2
Bankfull Mean Depth (ft)		-	-	-	-	-	1.5	-	-	-	-	-	0.9	-	-	-	-	0.7	-	0.5	0.6	0.6	0.7	-	2
Bankfull Max Depth (ft)	N/A				-	-	2.1	-	-	-	-	-	1.2	-	-	-	-	1.0	-	0.9	1.1	1.1	1.2	-	2
Bankfull Cross Sectional Area (ft ²)	N/A	-	-	-	-	-	12.1	-	-	-	-	-	6.6	-	-	-	-	6.5	-	4.0	4.4	4.4	4.7	-	2
Width/Depth Ratio					-	-	5.6	-	-	-	-	-	7.6	-	-	-	-	12.5	-	8.9	11.6	11.6	14.2	-	2
Entrenchment Ratio					-	-	8.0	-	-	-	-	-	2.1	-	-	-	-	3.3	-	3.2	3.5	3.5	3.8	-	2
Bank Height Ratio					-	-	1.6	1	-	-	-	-	1.0	-	-	-	-	1.0	1	1.0	1.0	1.0	1.0	-	2
Profile																									
Riffle Length (ft)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14.3	34.4	<u> </u>	67.3	-	11
Riffle Slope (ft/ft)					0.030	-	0.033	0.056	-	-	0.023	-	0.033	0.036	-	-	0.027	0.032	0.038	0.014	0.028	- 1	0.052	-	11
Pool Length (ft)	N/A				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4.2	11.0	-	27.1	-	12
Pool Max depth (ft)					-	-	2.7	-	-	-	-	-	1.5	-	-	-	-	1.6	-	1.2	2.0	-	3.2	-	12
Pool Spacing (ft)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	13.1	54.8	-	151.0	-	11
Pattern																									
Channel Beltwidth (ft)					28.0	-	42.0	56.0	-	-	62.0	-	67.5	73.0	-	-	17.0	26.0	49.0	26.0	38.0	39.0	54.0	2.7	5
Radius of Curvature (ft)					16.0	-	18.5	21.0	-	-	7.0	-	16.0	25.0	-	-	22.0	27.0	30.0	19.0	21.6	22.0	26.0	2.4	6
Rc:Bankfull width (ft/ft)	N/A				2.0	-	2.3	2.6	-	-	1.0	-	2.3	3.5	-	-	2.4	3.0	3.3	2.7	3.0	3.1	3.7		N/A
Meander Wavelength (ft)					128.0	-	159.0	190.0	-	-	53.0	-	58.5	64.0	-	-	73.0	103.0	130.0	101.0	112.3		132.0	2.7	6
Meander Width Ratio					3.4	-	5.1	6.8	-	-	8.7	-	9.5	10.3	-	-	1.9	2.9	5.5	3.7	5.4	5.5			N/A
Substrate, Bed, and Transport parameters	·											•	·					•		•					
Ri% / Ru% / P% / G% / S%							-										1	-				-			
SC% / Sa% / G% / C% / B% / Be%							-											-				N/A	4		
d16 / d35 / d50 / d84 / d95 (mm)							-											-				N/A	4		
Reach Shear Stress (competency) lb/f ²	N/A						-											-				-			
Max part size (mm) mobilized at bankfull							-											-				-			
Stream Power (transport capacity) W/m ²							-											-				-			
Additional Reach Parameters																									
Rosgen Classification							E4	b			1			E4b			1	B4				B4			
Bankfull Velocity (fps)		-	-	-			-											-				-			
Bankfull Discharge (cfs)		-	-	-			-																		
Valley length (ft)							64	1					1	,350								544	i		
Channel Thalweg length (ft)							56	8					1	,980				555				675	;		
Sinuosity (ft)	NI / A						1.3	33						1.47				1.4				1.24	4		
Water Surface Slope (Channel) (ft/ft)	N/A						0.02	235					0	.0263				0.0223				0.021	18		
BF slope (ft/ft)							0.03	812					0	.0356				0.0312				0.022	29		
Bankfull Floodplain Area (acres)							-							-				-				-			
% of Reach with Eroding Banks							-							-					_						
Channel Stability or Habitat Metric							-							-											
Biological or Other	1						-							-											

N/A - Not Applicable

- Information Unavailable

 Table 12. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section)

 Hogan Creek Stream Mitigation Project

 DMS Project No. 94708

 Monitoring Year 5 - 2019

Hogan Reach 1 (1,532 feet)

			Cross-S	ection 1	. (Riffle)					Cross-S	Section 2	2 (Pool)					Cross-S	ection 3	(Riffle)		
Dimension and Substrate ^{2,3}	Base	MY1	MY2	MY3	MY4	MY5	MY6	Base	MY1	MY2	MY3	MY4	MY5	MY6	Base	MY1	MY2	MY3	MY4	MY5	MY6
bankfull elevation (ft)	990.8	990.8	990.8	990.8	991.0	990.9		990.7	990.7	990.7	990.7	990.6	990.7		987.6	987.6	987.6	987.6	987.4	987.3	
low bank elevation (ft)	990.8	990.8	990.9	990.9	990.8	990.8		990.7	990.7	990.7	990.6	990.6	990.7		987.6	987.6	987.7	987.9	987.9	987.4	1
Bankfull Width (ft)	25.6	25.4	25.6	22.7	24.0	23.5		29.1	30.6	26.2	25.8	23.7	25.1		22.8	22.9	22.9	22.4	23.5	22.9	
Floodprone Width (ft)	>100	>100	>100	>100	>100	>100		N/A	N/A	N/A	N/A	N/A	N/A		>100	>100	>100	>100	>100	>100	
Bankfull Mean Depth (ft)	1.7	1.6	1.7	1.8	1.6	1.7		2.0	2.2	2.0	2.1	2.2	2.4		1.8	2.0	2.4	2.5	2.2	1.9	
Bankfull Max Depth (ft)	2.9	2.9	3.2	3.3	3.2	3.4		4.5	4.9	4.9	4.4	4.6	4.2		2.7	3.6	4.0	4.0	3.9	3.5	
Bankfull Cross Sectional Area (ft ²)	43.9	41.8	44.2	39.9	37.6	41.0		57.6	66.7	64.2	54.9	51.1	59.8		41.4	45.9	54.6	55.3	52.0	43.9	
Bankfull Width/Depth Ratio	14.9	15.4	14.8	12.9	15.3	13.4		14.7	14.1	10.7	12.1	11.0	10.6		12.6	11.4	9.6	9.1	10.6	11.9	1
Bankfull Entrenchment Ratio	>3.9	>3.9	>3.8	>4.4	>4.2	>4.3		N/A	N/A	N/A	N/A	N/A	N/A		>4.4	>4.4	>4.4	>4.5	>4.3	>4.4	
Bankfull Bank Height Ratio	1.0	1.0	1.0	1.0	<1.0	<1.0		N/A	N/A	N/A	N/A	N/A	N/A		1.0	1.0	1.0	1.1	1.1	1.0	
d50 (mm)	19	23	17	41	42	52.1		N/A	N/A	N/A	N/A	N/A	N/A		26	29	6.9	1.0	7.1	32	

Hogan Reach 2 (1,085 feet)

			Cross-S	Section 4	4 (Pool)					Cross-S	ection 5	6 (Riffle))				Cross-S	ection 6	5 (Riffle)	1	
Dimension and Substrate ^{2,3}	Base	MY1	MY2	MY3	MY4	MY5	MY6	Base	MY1	MY2 ¹	MY3	MY4	MY5	MY6	Base	MY1	MY2	MY3	MY4	MY5	MY6
bankfull elevation (ft)	984.0	984.0	984.0	984.0	984.0	983.5		983.6	983.6	983.6	983.6	983.3	983.7		982.1	982.1	982.1	982.1	981.9	981.6	
low bank elevation (ft)	984.0	984.0	984.0	984.0	984.0	983.5		983.6	983.6	983.7	983.8	983.8	983.6		982.1	982.1	982.0	981.9	981.9	981.7	
Bankfull Width (ft)	44.6	45.5	44	43.2	32.1	25.5		24.2	24.8	23.6	24.7	26.1	26.2		24.7	28.1	28.2	28.7	26.1	29.0	
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A		>100	>100	>100	>100	>100	>100		>100	>100	>100	>100	>100	>100	
Bankfull Mean Depth (ft)	2.2	2.1	1.6	1.7	1.8	1.9		1.9	2.0	2.4	2.5	2.2	1.6		2.3	2.0	2.2	2.1	2.2	2.1	
Bankfull Max Depth (ft)	4.2	4.3	4.2	4.6	4.0	3.3		3.2	3.6	3.9	3.6	3.4	2.7		3.6	3.8	3.9	3.8	4.1	3.2	
Bankfull Cross Sectional Area (ft ²)	98.9	95.4	69.1	72.5	58.6	48.5		45.2	49.2	56.6	61	58.2	42.7		56.6	56.5	61.1	61.4	56.5	60.1	
Bankfull Width/Depth Ratio	20.1	21.7	28.1	25.7	17.5	13.4		13.0	12.5	9.8	10	11.7	16		10.8	14.0	13	13.4	12.0	14.0	
Bankfull Entrenchment Ratio	N/A	N/A	N/A	N/A	N/A	N/A		>4.1	>4.0	>4.2	>4.0	>3.8	>3.8		>4.0	>3.6	>3.5	>3.5	>3.8	>3.4	
Bankfull Bank Height Ratio	N/A	N/A	N/A	N/A	N/A	N/A		1.0	1.0	1.0	1.0	1.2	<1.0		1.0	1.0	1.0	<1.0	1.0	1.0	
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A		27	32	6.4	41	29	47		31	30	0.18	64	56	63	

UT2 (675 feet)

			Cross-S	ection 7	' (Riffle))				Cross-S	ection 8	3 (Pool)					Cross-S	ection 9	9 (Riffle)		
Dimension and Substrate ^{2,3}	Base	MY1	MY2 ¹	MY3	MY4	MY5	MY6	Base	MY1	MY2	MY3	MY4	MY5	MY6	Base	MY1	MY2	MY3	MY4	MY5	MY6
bankfull elevation (ft)	989.4	989.4	989.4	989.4	989.7	989.5		988.2	988.2	988.2	988.2	988.4	988.3		986.4	986.4	986.4	986.4	986.9	987.0	
low bank elevation (ft)	989.4	989.4	989.3	989.4	989.7	989.8		988.2	988.3	988.3	988.3	988.4	988.3		986.4	986.5	986.4	986.5	986.8	986.9	1
Bankfull Width (ft)	7.6	6.9	7.9	6.2	8.6	7.4		6.9	7.1	7.1	5.7	6.6	5.8		6.5	6.8	6.8	5.5	7.9	5.9	1
Floodprone Width (ft)	28.8	29.0	30	29.3	25.9	34.6		N/A	N/A	N/A	N/A	N/A	N/A		21.0	20.6	19.2	18.8	17.8	27.9	
Bankfull Mean Depth (ft)	0.5	0.5	0.6	0.6	0.5	0.8		0.6	0.7	0.7	0.7	0.6	0.7		0.7	0.7	0.6	0.5	0.5	0.7	
Bankfull Max Depth (ft)	0.9	1.0	1.1	1.0	1.0	1.4		1.0	1.3	1.0	1.3	1.2	1.2		1.2	1.1	0.9	0.8	1.0	1.1	1
Bankfull Cross Sectional Area (ft ²)	4.0	3.5	4.9	3.5	4.3	5.8		4.4	5.1	4.7	4.3	4.0	4.2		4.7	4.6	4.1	2.7	4.2	4.0	
Bankfull Width/Depth Ratio	14.2	13.6	12.8	10.8	17.2	9.5		10.7	9.8	10.8	7.7	10.7	8.0		8.9	10.3	11.3	11.2	15.0	8.6	
Bankfull Entrenchment Ratio	3.8	4.2	3.8	4.7	3.0	4.7		N/A	N/A	N/A	N/A	N/A	N/A		3.2	3.0	2.8	3.4	2.2	4.8	1
Bankfull Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.3		N/A	N/A	N/A	N/A	N/A	N/A		1.0	1.0	1.0	1.1	<1.0	<1.0	1
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	

N/A - Not Applicable

¹Adjustment in survey points included in bankfull calculations resulting in change to previous monitoring year bankfull dimensions.

²Prior to MY4, bankfull dimensions were calculated using a fixed bankfull elevation.

³MY4-MY6 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by NCIRT and NCDMS (9/2018). The remainder of the bankfull dimensions are calculated based on the current year's low bank height. MY4 dimensions were updated in MY5.

Table 13a. Monitoring Data - Stream Reach Data Summary

Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

Hogan Creek-Reach 1 (1,532 feet)

Parameter			Bas	seline					N	IY1					ľ	/IY2					N	1Y3					м	Y4						MY5							MY6		
	Min	Mean	Med	l Max	SD	n	Min	Mear	Med	Max	SD	n	Min	Mean	Med	Max	(SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mear	n Me	d M	lax	SD	n	Min	Mea	n Med	Max	SD	n
Dimension and Substrate - Riffle only ^{1,2}																																											
Bankfull Width (ft)	22.8	24.2	24.2	25.6	N/A	2	22.9	24.2	24.2	25.4	N/A	2	22.9	24.25	24.2	5 25.6	5 N/A	2	22.4	22.6	22.6	22.7	N/A	2	23.5	23.8	23.8	24.0	N/A	2	22.9	23.2	23.	2 23	3.5	N/A	2						
Floodprone Width (ft)	>100	>100	>100) >100	N/A	2	>100	>100	>100	>100	N/A	2	>100	>100	>100) >100	N/A	2	>100	>100	>100	>100	N/A	2	>100	>100	>100	>100	N/A	2	>100	>100	>10	00 >1	.00	N/A	2						
Bankfull Mean Depth (ft)	1.7	1.8	1.8	1.8	N/A	2	1.6	1.8	1.8	2.0	N/A	2	1.7	2.1	2.1	2.4	N/A	2	1.8	2.2	2.2	2.5	N/A	2	1.6	1.9	1.9	2.2	N/A	2	1.7	1.8	1.8	3 1.	.9	N/A	2						
Bankfull Max Depth (ft)	2.7	2.8	2.8	2.9	N/A	2	2.9	3.3	3.3	3.6	N/A	2	3.2	3.6	3.6	4	N/A	2	3.3	3.7	3.7	4.0	N/A	2	3.2	3.6	3.6	3.9	N/A	2	3.4	3.5	3.5	5 3.	8.5	N/A	2						
Bankfull Cross Sectional Area (ft ²)	41.4	42.7	42.7	43.9	N/A	2	41.8	43.9	43.9	45.9	N/A	2	44.2	49.4	49.4	54.6	5 N/A	2	39.9	47.6	47.6	55.3	N/A	2	37.6	44.8	44.8	52.0	N/A	2	41.0	42.5	42.	5 43	3.9	N/A	2						
Width/Depth Ratio	12.6	13.8	13.8	14.9	N/A	2	11.4	13.4	13.4	15.4	N/A	2	9.6	12.2	12.2	14.8	B N/A	2	9.1	11.0	11.0	12.9	N/A	2	10.6	13.0	13.0	15.3	N/A	2	11.9	12.7	12.	7 13	3.4	N/A	2						
Entrenchment Ratio	>3.9	>4.2	>4.2	>4.4	N/A	2	>3.9	>4.2	>4.2	>4.4	N/A	2	>3.8	>4.1	>4.1	>4.4	N/A	2	>4.4	>4.45	>4.45	>4.5	N/A	2	>4.2	>4.25	>4.25	>4.3	N/A	2	>4.3	>4.35	5 >4.3	35 >4	4.4	N/A	2						
Bank Height Ratio	1.0	1.0	1.0	1.0	N/A	2	1.0	1.0	1.0	1.0	N/A	2	1.0	1.0	1.0	1.0	N/A	2	1.0	1.1	1.1	1.1	N/A	2	<1.0	1.0	1.0	1.1	N/A	2	<1.0	1.0	1.0) 1.	.0	N/A	2						
Profile																																											
Riffle Length (ft)							15.0																																				
Riffle Slope (ft/ft)	0.002	0.010	N/A	0.018	B N/A	8	0.006	0.013															N/A	10	0.007	0.023	0.021	0.051	N/A	11	0.006	0.022	2 0.02	13 0.0	080	N/A	9						
Pool Length (ft)	25.0	62.6	N/A	88.0	N/A	13	20.0	67.1	76.0	105.0	N/A	13	30.87	85.3	89.5	140.	8 N/A	13	32.4	100.7	115.4	170.7	N/A	12	13.8	98.1	99.7	172.0	N/A	11	67.0	170.0) 103	.0 170	0.0	N/A	9						
Pool Max depth (ft)	2.5	3.2	N/A	4.1	N/A	13	2.8	3.7	3.4	4.8	N/A	13	2.3	3.7	3.6	5.1	N/A	13	2.4	3.8	3.8	5.8	N/A	12	3.2	4.0	3.9	5.6	N/A	11	3.0	4.2	4.() 6.	5.3	N/A	9						1
Pool Spacing (ft)	73.3	120.9	N/A	200.1	N/A	12	52.0	112.8	111.0	148.0	N/A	12	57	110.1	103	204.	0 N/A	12	46.9	122.5	120.9	180.5	N/A	11	61.5	132.0	129.1	230.6	N/A	10	104.0	162.0) 134	.0 372	2.0	N/A	8						1
Pattern																			_																								
Channel Beltwidth (ft)	63.0		_		_																																		4		4		
Radius of Curvature (ft)	70.0	76.5	75.0	86.0	6.8	4																																					
Rc:Bankfull width (ft/ft)			_	_		N/A																																	4		4		
Meander Wavelength (ft)			_	_	_	_																																	4		4		
Meander Width Ratio	2.6	4.0	4.2	5.0	N/A	N/A																																					
Additional Reach Parameters	1						-																								-												
Rosgen Classification				C4						24						C4						24						4						C4									
Channel Thalweg length (ft)			,	,532					,	530						532					,	532					1,5							1,532									
Sinuosity (ft)				.18						.18						18						.18					1.							1.18				<u> </u>					
Water Surface Slope (Channel) (ft/ft)				0063						064						.007			_			064					0.0							0.0062				<u> </u>					
BF slope (ft/ft)			0.0	0067	-				0.0	069		-			0.	0069			_		0.0	068			ļ		0.0	067					0	0.0066				<u> </u>					
Ri% / Ru% / P% / G% / S%		-	-	-	-	-	-	-	-	-	-	-	-	· ·	-	-	-	-	-	· ·	-	-	-	-	-	-	-	-	-	-	-	-	-		<u>·</u>	-	<u> </u>		<u> </u>	_	4	\vdash	
SC% / Sa% / G% / C% / B% / Be%		3.5%		0.5%	_				_	1.5%	-	0%	_	21.0%			6 0%			20%	_			0%	5%		58%			0%	0%	2%		% 26			0%	┢──	<u> </u>	_	4	\vdash	
d16 / d35 / d50 / d84 / d95 /		19	23		56		13	21	27	44	62		0.19	6.1		33	50		0.20	5.6	21	63	139		0.40	7.5	17	61	105		19	31	42		75	90		4	\bot				
% of Reach with Eroding Banks			(0%				_		'%	_	_		_		9%	_	_		_	9	9%					9	%	_			_		1%				<u> </u>					
Channel Stability or Habitat Metric							-												_																			\square					
Biological or Other																																											

N/A - Not Applicable

- Information Unavailable

¹Prior to MY4, bankfull dimensions were calculated using a fixed bankfull elevation.

²MY4-MY6 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by NCIRT and NCDMS (9/2018). The remainder of the bankfull dimensions are calculated based on the current year's low bank height. MY4 dimensions were updated in MY5.

Table 13b. Monitoring Data - Stream Reach Data Summary

Hogan Creek Stream Mitigation Project DMS Project No. 94708 **Monitoring Year 5 - 2019**

Hogan Creek-Reach 2 (1,085 feet)

Parameter			Bas	seline					N	IY1					M	(2					N	/IY3					r	1Y4						MY	5						MY6		
	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mear	n Med	Max	SD	n	Min	n Me	an	Med	Max	SD	n	Mi	in M	ean 🖡	Med Ma	ax !	SD
imension and Substrate - Riffle only ^{1,2}																																											
Bankfull Width (ft)	24.2	24.5	24.5	24.7	N/A	2	24.8	26.5	26.5	28.1	N/A	2	23.6	25.9	25.9	28.2	N/A	2	24.7	26.7	26.7	28.7	N/A	2	26.1	26.1	26.1	26.1	N/A	2	26.2	2 27	.6	27.6	29.0	N/A	2						
Floodprone Width (ft)	>100	>100	>100	>100	N/A	2	>100	>100	>100	>100	N/A	2	>100	>100	>100	>100	N/A	2	>100	>100	>100	>100	N/A	2	>100	>100	>100	>100	N/A	2	>100	0 >1	00 :	>100	>100	N/A	2						
Bankfull Mean Depth (ft)	1.9	2.1	2.1	2.3	N/A	2	2.0	2.0	2.0	2.0	N/A	2	2.2	2.3	2.3	2.4	N/A	2	2.1	2.3	2.3	2.5	N/A	2	2.2	2.2	2.2	2.2	N/A	2	1.6	1.	9	1.9	2.1	N/A	2						
Bankfull Max Depth (ft)	3.2	3.4	3.4	3.6	N/A	2	3.6	3.7	3.7	3.8	N/A	2	3.9	3.9	3.9	3.9	N/A	2	3.6	3.7	3.7	3.8	N/A	2	3.4	3.8	3.8	4.1	N/A	2	2.7	3.	0	3.0	3.2	N/A	2						
Bankfull Cross Sectional Area (ft ²)	45.2	50.9	50.9	56.6	N/A	2	49.2	52.9	52.9	56.5	N/A	2	56.6	58.9	58.9	61.1	N/A	2	61.0	61.2	61.2	61.4	N/A	2	56.5	57.4	57.4	58.2	N/A	2	42.7	7 51	.4	51.4	60.1	N/A	2						
Width/Depth Ratio	10.8	11.9	11.9	13.0	N/A	2	12.5	13.3	13.3	14.0	N/A	2	9.8	11.4	11.4	13.0	N/A	2	10.0	11.7	11.7	13.4	N/A	2	11.7	11.9	11.9	12.0	N/A	2	14.0) 15	.0	15.0	16.0	N/A	2						
Entrenchment Ratio	>4.0	>4.1	>4.1	>4.1	N/A	2	>3.6	>3.8	>3.8	>4.0	N/A	2	>3.5	>3.75	>3.75	>4.0	N/A	2	>3.5	>3.75	>3.75	>4.0	N/A	2	>3.8	>3.8	>3.8	>3.8	N/A	2	>3.4	4 >3	.6	>3.6	>3.8	N/A	2						
Bank Height Ratio	1.0	1.0	1.0	1.0	N/A	2	1.0	1.0	1.0	1.0	N/A	2	1.0	1.0	1.0	1.0	N/A	2	0.9	1.0	1.0	1.0	N/A	2	1.0	1.1	1.1	1.2	N/A	2	<1.0) 1.		1.0		N/A	2						
Profile	•			- <u>-</u>	- -	•	•																																				
Riffle Length (ft)	95.6	111.6	N/A	130.3	N/A	5	56.0	91.0	101.0	125.0	N/A	5	24.7	51.8	46.9	97.6	N/A	5	19.6	46.3	43.2	68.2	N/A	5	51.5	94.0	69.9	151.2	N/A	5	69.0) 110	0.0 1	107.0	157.0	N/A	5						
Riffle Slope (ft/ft)	0.004	0.005	N/A	0.007	N/A	5	0.004	0.009	0.007	0.018	N/A	5	0.008	0.012	0.01	0.017	N/A	5	0.006	0.009	0.007	0.014	N/A	5	0.004	0.008	9 0.00	0.012	N/A	5		7 0.00											
Pool Length (ft)	43.7	68.8	N/A	117.1	N/A	5	60.0	87.3	64.0	135.0	N/A	5	29.91	74.4	75.4	107.0	N/A	5	54.0	71.1	58.1	117.1	N/A	5	42.3	98.1	87.5	184.1	N/A	5	45.0) 118	3.0	86.0	118.0	N/A	5						
Pool Max depth (ft)	3.8	4.7	N/A	5.8	N/A	5	4.0	4.8	4.6	5.7	N/A	5	3.77	4.4	4.4	5.4	N/A	5	3.5	4.5	4.4	6.0	N/A	5	4.2	4.9	4.5	6.0	N/A	5	4.1	4.	8	5.0	5.7	N/A	5						
Pool Spacing (ft)	164.1	208.4	N/A	253.1	N/A	4	169.0	196.5	189.5	238.0	N/A	4	93.7	134.2	129.4	201.0	N/A	4	76.8	140.8	142.6	201.3	N/A	4	188.1	202.1	. 203.	214.4	N/A	4	162.	0 198	3.0 2	203.0	222.0	N/A	4						
Pattern																																											
Channel Beltwidth (ft)	84.0	114.0	117.0	141.0	28.6	3																																					
Radius of Curvature (ft)	69.0	73.3	74.0	75.0	2.8	5																																					
Rc:Bankfull width (ft/ft)	2.8	3.0	3.0	3.1	N/A	N/A																																					
Meander Wavelength (ft)	292.0	307.0	301.0	328.0	18.7	3																																					
Meander Width Ratio	3.4	4.7	4.8	5.8	N/A	N/A																																					
dditional Reach Parameters																																											
Rosgen Classification				C4					(24					C4	1					(C4						C4						C4									
Channel Thalweg length (ft)			1,	,085					1,	085					1,0	85					1,	085					1	085						1,08	5								
Sinuosity (ft)			1	37					1	37					1.3	57					1	.37					1	.37						1.37	7								
Water Surface Slope (Channel) (ft/ft)			0.0	0050					0.0	045					0.0	05					0.0	0054					0.	0053						0.005	52								
BF slope (ft/ft)			0.0	0053					0.0	053					0.00)53					0.0	0057					0.	0062						0.006	57								
Ri% / Ru% / P% / G% / S%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-						
SC% / Sa% / G% / C% / B% / Be%	0%	3%	9%	89%	0%	0%	0%	0%	99%	1%	0%	0%	17%	50.0%	31%	2.0%	0%	0%	0%	13.0%	51%	32%	4%	0%	0%	5.0%	69%	23%	3%	0%	0%	49		53%		2%	2%						
d16 / d35 / d50 / d84 / d95 /	13	24	22	35	49		18	25	31	52	70		0.062	0.16	0.3	17	40		7.1	31	46	138	243		13	24	37	95	224		23	4	7	58	110	180							
% of Reach with Eroding Banks			(0%					2	.%					13	%					6	5%					. 1	0%						2%									
Channel Stability or Habitat Metric			_	_												_	_	_			_			_				_						_		_							
Biological or Other																																											
/A - Not Applicable																																											

N/A - Not Applicable

- Information Unavailable

¹Prior to MY4, bankfull dimensions were calculated using a fixed bankfull elevation.

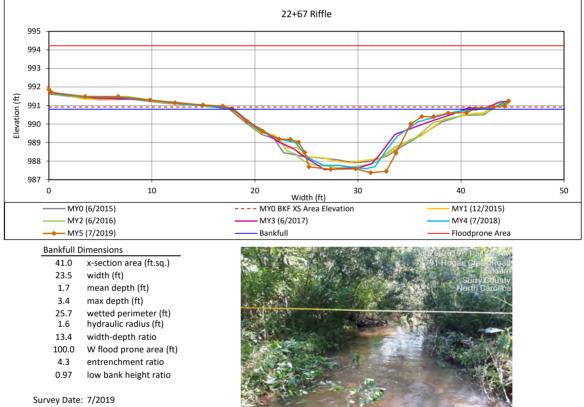
²MY4-MY6 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by NCIRT and NCDMS (9/2018). The remainder of the bankfull dimensions are calculated based on the current year's low bank height. MY4 dimensions were updated in MY5.

Table 13c. Monitoring Data - Stream Reach Data Summary

Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

UT2 (675 feet)

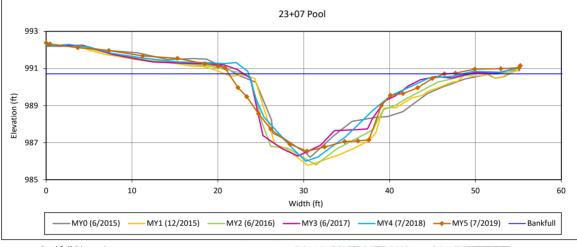
Parameter			Ва	seline						MY	1						MY2						N	IY3						M	′ 4						M	Y5						ľ	MY6		
	Min	Mean	Med	d Max	K SI	D	I IV	lin M	Nean	Med	Max	SD	n	Min	Mear	n Me	d Ma	ax S	D	n	Min	Mean	Med	Max	SD	n	N	/lin N	/lean	Med	Max	SD	n	M	in M	ean	Med	Max	SD	, T	n	Min	Mean	Med	Max	SD	n
Dimension and Substrate - Riffle only ^{1,2}																																															
	6.5	7.1	7.1	7.6	N/	A 2	6	.8	6.9	6.9	6.9	N/A	2	6.8	7.4	7.4	7.	9 N/	/A	2	5.5	5.85	5.85	6.2	N/A	2	7	7.9	8.3	8.3	8.6	N/A	2	5.	96	5.7	6.7	7.4	N/A	4 2	2						
Floodprone Width (ft)	21	24.9	24.9	28.8		Ά 2	20).6	24.8	24.8	29.0	N/A	2	19.2	24.6	24.6	5 30) N/	/A	2	18.8	24.05	24.05	29.3	N/A	2	17	7.8	21.9	21.9	25.9	N/A	2	27	.9 3	1.3	31.3	34.6	N/A	4 7	2				T	T	
Bankfull Mean Depth (ft)	0.5	0.6	0.6	0.7	N/	A 2	0	.5	0.6	0.6	0.7	N/A	2	0.6	0.6	0.6	0.	6 N/	/A	2	0.5	0.55	0.55	0.6	N/A	2	0).5	0.5	0.5	0.5	N/A	2	0.	7 ().8	0.8	0.8	N/A	A 2	2						
Bankfull Max Depth (ft)	0.9	1.1	1.1	1.2	N/	A 2	1	.0	1.1	1.1	1.1	N/A	2	0.9	1.0	1.0	1.	1 N/	/A	2	0.8	0.9	0.9	1	N/A	2	1	L.O	1.0	1.0	1.0	N/A	2	1.	1 1	L.3	1.3	1.4	N/A	A 2	2						
Bankfull Cross Sectional Area (ft ²)	4.0	4.4	4.4	4.7	N/	Ά	3	.5	4.1	4.1	4.6	N/A	2	4.1	4.5	4.5	4.	9 N/	/Α	2	2.7	3.1	3.1	3.5	N/A	2	4	1.2	4.3	4.3	4.3	N/A	2	4.	0 4	1.9	4.9	5.8	N/A	4 2	2						
Width/Depth Ratio	8.9	11.6	11.6	5 14.2	2 N/	Ά 2	10).3	12.0	12.0	13.6	N/A	2	11.3	12.1	12.1	L 12	.8 N/	/A	2	10.8	11	11	11.2	N/A	2	15	5.0	16.1	16.1	17.2	N/A	2	8.	6 9	9.1	9.1	9.5	N/A	4 2	2						
Entrenchment Ratio	3.2	3.5	3.5	3.8	N/	Ά 2	3	.0	3.6	3.6	4.2	N/A	2	2.8	3.3	3.3	3.	8 N/	/A	2	3.4	4.05	4.05	4.7	N/A	2	2	2.2	2.6	2.6	3.0	N/A	2	4.	7 4	1.8	4.8	4.8	N/A	4 7	2				T	T	
Bank Height Ratio	1.0	1.0	1.0	1.0	N/	A 2	1	.0	1.0	1.0	1.0	N/A	2	1.0	1.0	1.0	1.	0 N/	/A	2	1	1.05	1.05	1.1	N/A	2	<1	1.0	<1.0	<1.0	1.0	N/A	2	<1	.0 1	l.1	1.1	1.3	N/A	A 7	2						
Profile																																															
Riffle Length (ft)	14.3	34.4	N/A	67.3	3 N/	'A 1					62.0		11												N/A			5.2									21.0				11						
Riffle Slope (ft/ft)	0.014	0.028	N/A	0.052	2 N/	'A 1	1 0.0	014 0					11	0.012	0.041	0.03	0.0	99 N/	/A	11	0.011	0.036	0.032	0.071	N/A	11	0.0	023 0	.050	0.044	0.130	N/A	16	0.0	08 0.	049	0.047	0.135	N/A	A 13	11						
Pool Length (ft)	4.2	11.0	N/A	27.1	L N/	'A 1	2 7	.0		12.0			13	7.07	17.2	13.7	7 50	.4 N/	/A	13	7.9	19.5	19.4	35.6	N/A	10	10	0.0	18.8	18.0	39.8	N/A	16	14	.0 3	7.0	22.0	37.0	N/A	4 9	9						
Pool Max depth (ft)				3.2			2 1						13	1.14	1.7	1.7	2.	3 N/	/A	13	1.0	1.8	1.9	2.8	N/A	10	0).8	1.6	1.6	2.6	N/A	15	1.	1 1	l.8	1.8	2.7	N/A	4 9	9						
Pool Spacing (ft)	13.1	54.8	N/A	151.0	0 N/	'A 1	1 8	.0	50.4	43.5	145.0	N/A	12	11.9	47.8	35.9	137	7.8 N/	/A	12	22.1	57.6	48.6	134.3	B N/A	9	14	4.6	42.0	36.8	142.0	N/A	14	19	.0 7	3.0	47.0	241.0	N/A	4 8	8		. <u> </u>				
Pattern			-	-	-																				_								_														
Channel Beltwidth (ft)				54.0																																			_					4	4	4	4
Radius of Curvature (ft)			_	26.0		_																																	_					4	4	4	4
Rc:Bankfull width (ft/ft)			3.1													_																							_	4				4	4	4	4
Meander Wavelength (ft)						_										_																	_						_	4				4	4	4	4
Meander Width Ratio	3.7	5.4	5.5	7.6	N/	A N	A																																						4	4	
Additional Reach Parameters																																															
Rosgen Classification				B4						B4							B4							34						B4							В										
Channel Thalweg length (ft)				675						670							675							75						67							67										
Sinuosity (ft)				1.24						1.24							1.24							.24						1.2							1.2										
Water Surface Slope (Channel) (ft/ft)				0218						0.020							0215							205			_			0.01				_			0.02										
BF slope (ft/ft)			0.	0229						0.022	26				-	0.	0224						0.0	222			_			0.02	24		-	_			0.02	216									
Ri% / Ru% / P% / G% / S%	-	-	-	-		· · ·	_	·	-	-	-	-	-	-	-	-	-	- ·		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	$ \rightarrow $		<u> </u>	<u> </u>	<u> </u>	'
SC% / Sa% / G% / C% / B% / Be%	-	-	-	-				-	-	-	-	-	-	-	-	-	-	_	·		-	-	-	-	-		-	-	-	-	-	-		-		-	-	-	-		-	\longrightarrow		—	_	_	'
d16/d35/d50/d84/d95/		-	-	-	-				-	-	-	-		-	-	-					-	-	-	-	-		-	-	-	-	-	-		-		-	-	-	-		4				<u> </u>	<u> </u>	
% of Reach with Eroding Banks	_			0%				_	_	0%	_				_	_	0%	_		_			0	1%	_	_		_		09	6						0	%			\rightarrow						
Channel Stability or Habitat Metric					_		_	_									_		_					_		_	-		_		_					_		_									
Biological or Other																																															


N/A - Not Applicable

- Information Unavailable

¹Prior to MY4, bankfull dimensions were calculated using a fixed bankfull elevation.

²MY4-MY6 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by NCIRT and NCDMS (9/2018). The remainder of the bankfull dimensions are calculated based on the current year's low bank height. MY4 dimensions were updated in MY5.


Cross Section 1-Hogan Creek Reach 1

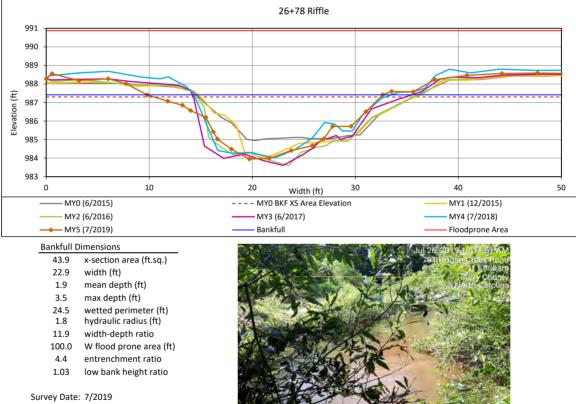
Field Crew: Kee Mapping & Surveying

View Downstream

Cross Section 2-Hogan Creek Reach 1

Bankfull Dimensions

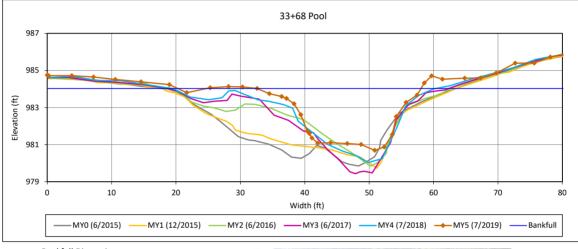
Survey Date: 7/2019


- x-section area (ft.sq.) 59.8
- 25.1 width (ft)
- 2.4 mean depth (ft)
- max depth (ft) 4.2
- wetted perimeter (ft) hydraulic radius (ft) 27.3
- 2.2
- 10.6 width-depth ratio

Field Crew: Kee Mapping & Surveying

View Downstream

Cross Section 3-Hogan Creek Reach 1



Field Crew: Kee Mapping & Surveying

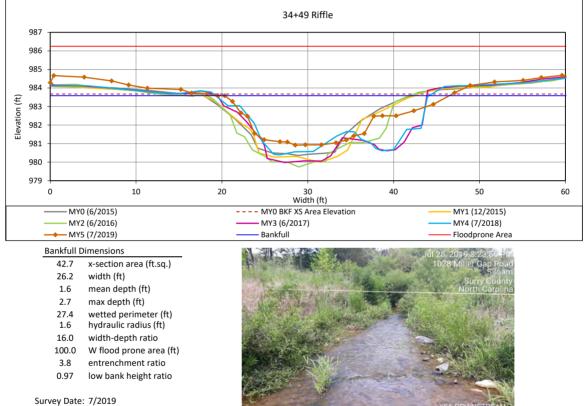
View Downstream

Cross-Section Plots Hogan Creek Stream Mitigation Project NCDMS Project No. 94708 Monitoring Year 5 - 2019

Cross Section 4-Hogan Creek Reach 2

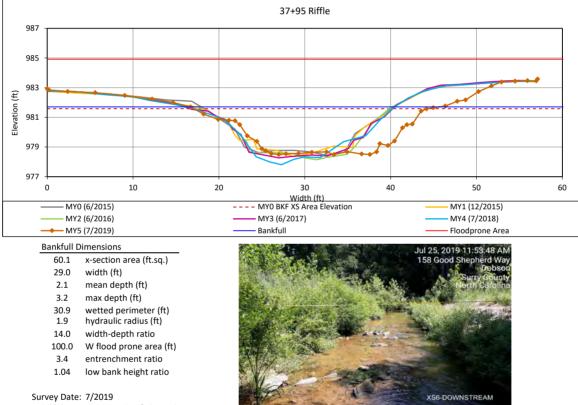
Bankfull Dimensions

Survey Date: 7/2019


- x-section area (ft.sq.) 48.5
- 25.5 width (ft)
- 1.9 mean depth (ft)
- max depth (ft) 3.3
- 27.2
- wetted perimeter (ft) hydraulic radius (ft) 1.8
- 13.4 width-depth ratio

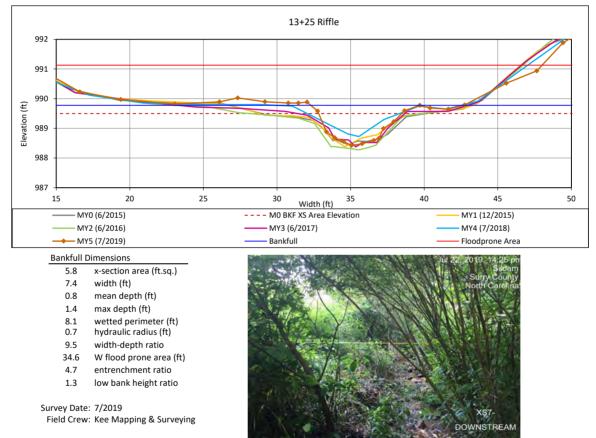
Field Crew: Kee Mapping & Surveying

View Downstream

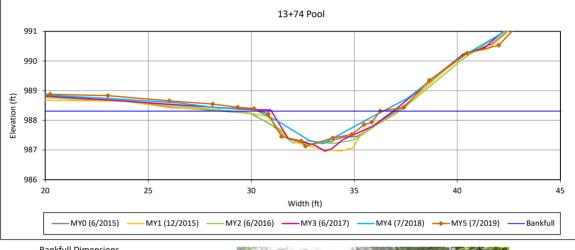

Cross Section 5-Hogan Creek Reach 2

Field Crew: Kee Mapping & Surveying

View Downstream


Cross Section 6-Hogan Creek Reach 2

Field Crew: Kee Mapping & Surveying


View Downstream

Cross Section 7-UT2

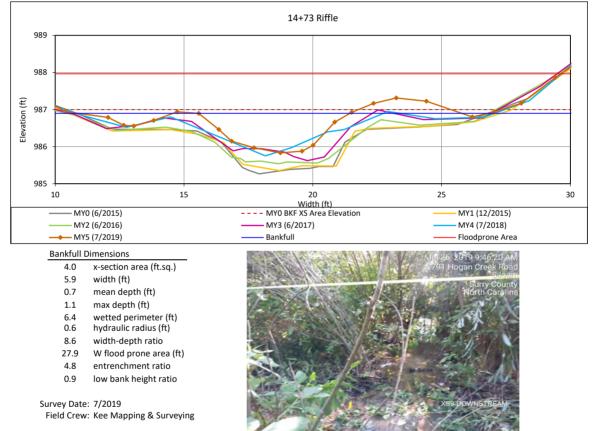
View Downstream

Cross Section 8-UT2

Bankfull Dimensions

Survey Date: 7/2019

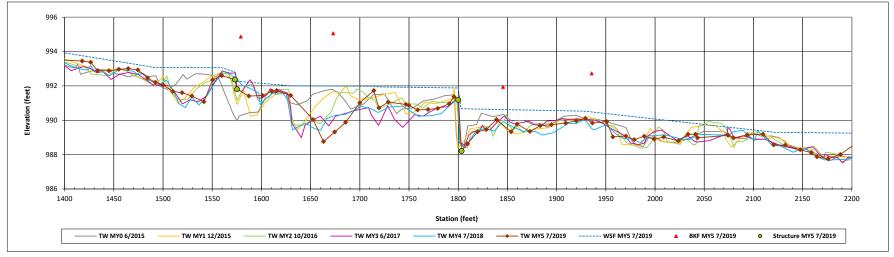
- x-section area (ft.sq.) 4.2
- 5.8 width (ft)
- 0.7 mean depth (ft)
- max depth (ft) 1.2
- 6.5 0.6 wetted perimeter (ft) hydraulic radius (ft)

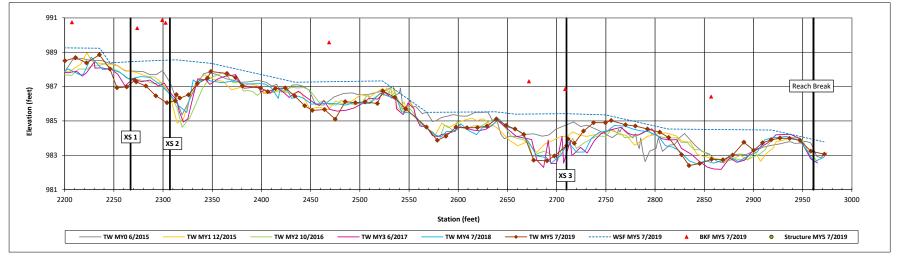

Field Crew: Kee Mapping & Surveying

8.0 width-depth ratio

View Downstream

Cross Section 9-UT2

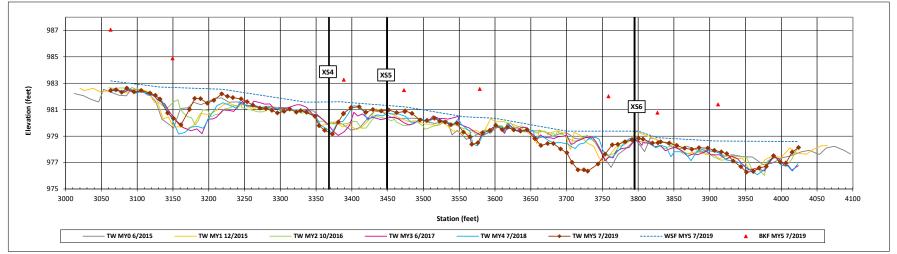



View Downstream

Longitudinal Profile Plots

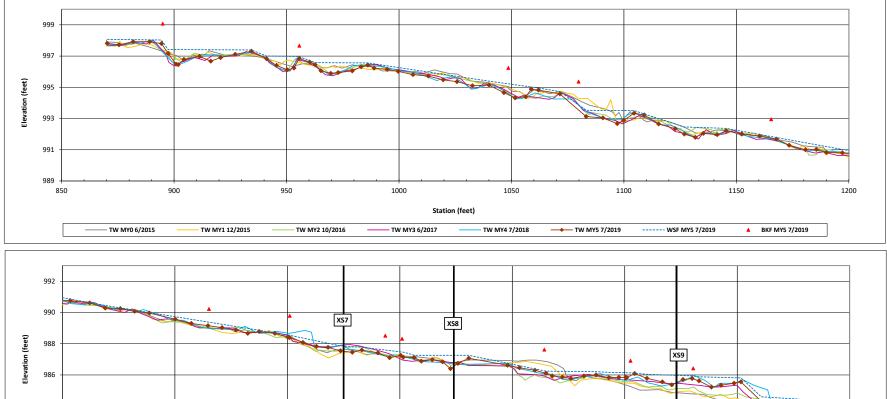
Hogan Creek Mitigation Project DMS Project No. 92343 Monitoring Year 5 - 2019

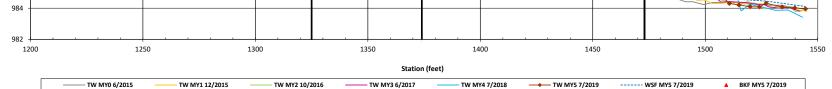
Hogan Creek Reach 1 (STA 14+29 - STA 29+61)



Longitudinal Profile Plots

Hogan Creek Mitigation Project DMS Project No. 92343 Monitoring Year 5 - 2019

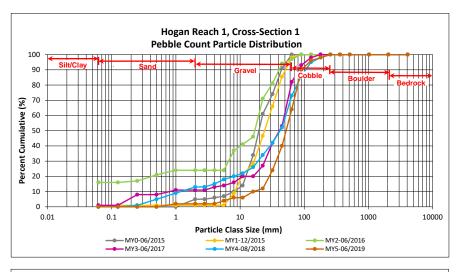

Hogan Creek Reach 2 (STA 30+11 - STA 40+96)

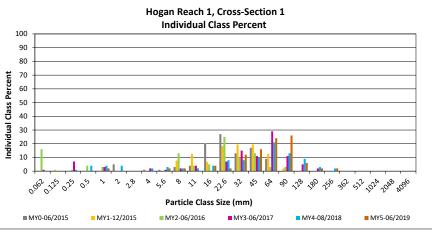


Longitudinal Profile Plots

Hogan Creek Mitigation Project DMS Project No. 92343 Monitoring Year 5 - 2019

UT2 (STA 8+70 - STA 15+45)

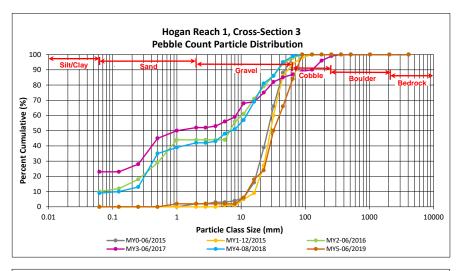


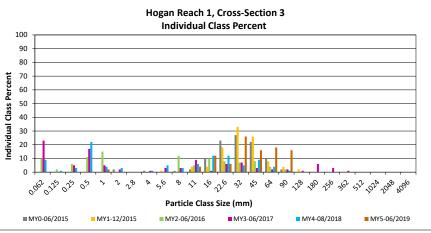


Hogan Reach 1, Cross-Section 1

		Diame	ter (mm)	Riffle 100-	Summary			
Par	ticle Class			Count	Class	Percent		
		min	max	count	Percentage	Cumulative		
SILT/CLAY	Silt/Clay	0.000	0.062			0		
	Very fine	0.062	0.125			0		
_	Fine	0.125	0.250			0		
SAND	Medium	0.25	0.50			0		
7'	Coarse	0.5	1.0	2	2	2		
	Very Coarse	1.0	2.0			2		
	Very Fine	2.0	2.8			2		
	Very Fine	2.8	4.0			2		
	Fine	4.0	5.6	2	2	4		
	Fine	5.6	8.0	2	2	6		
	Medium	8.0	11.0			6		
GRAVET	Medium	11.0	16.0	4	4	10		
-	Coarse	16.0	22.6	2	2	12		
	Coarse	22.6	32	12	12	24		
	Very Coarse	32	45	16	16	40		
	Very Coarse	45	64	24	24	64		
	Small	64	90	26	26	90		
coeste	Small	90	128	6	6	96		
COBY.	Large	128	180	2	2	98		
-	Large	180	256	2	2	100		
	Small	256	362			100		
e se	Small	362	512			100		
ø	Medium	512	1024			100		
NO.	Large/Very Large	1024	2048			100		
BEDROCK	Bedrock	2048	>2048			100		
			Total	100	100	100		

	Cross-Section 1										
Ch	annel materials (mm)										
D ₁₆ =	25.4										
D ₃₅ =	40.5										
D ₅₀ =	52.1										
D ₈₄ =	83.2										
D ₉₅ =	120.7										
D ₁₀₀ =	256.0										

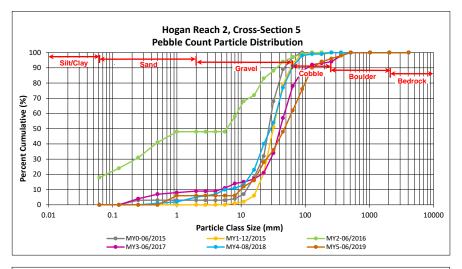


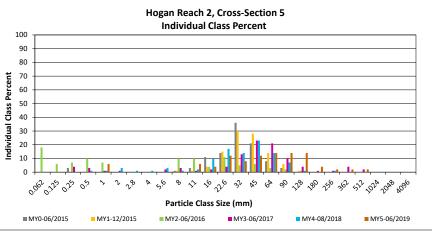


Hogan Reach 1, Cross-Section 3

		Diame	ter (mm)	Riffle 100-	Sum	mary
Par	ticle Class			Count	Class	Percent
		min	max	count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
-	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50			0
יכ '	Coarse	0.5	1.0	2	2	2
	Very Coarse	1.0	2.0			2
	Very Fine	2.0	2.8			2
	Very Fine	2.8	4.0			2
	Fine	4.0	5.6			2
	Fine	5.6	8.0			2
, PET	Medium	8.0	11.0	4	4	6
GRAVET	Medium	11.0	16.0	12	12	18
-	Coarse	16.0	22.6	6	6	24
	Coarse	22.6	32	26	26	50
	Very Coarse	32	45	16	16	66
	Very Coarse	45	64	18	18	84
	Small	64	90	16	16	100
BLE	Small	90	128			100
const	Large	128	180			100
	Large	180	256			100
	Small	256	362			100
, se	Small	362	512			100
and a second	Medium	512	1024			100
10	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section 3										
Ch	annel materials (mm)									
D ₁₆ =	15.0									
D ₃₅ =	26.2									
D ₅₀ =	32.0									
D ₈₄ =	64.0									
D ₉₅ =	80.9									
D ₁₀₀ =	90.0									

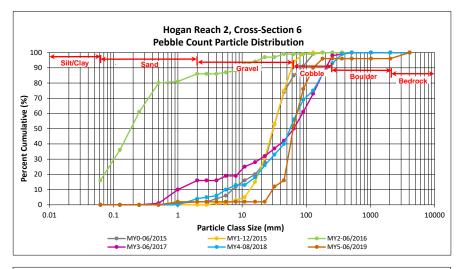


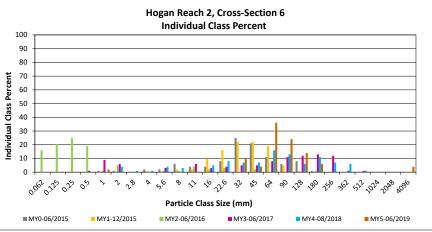


Hogan Reach 2, Cross-Section 5

		Diame	ter (mm)	Riffle 100-	Summary			
Par	ticle Class			Count	Class	Percent		
		min	max	Count	Percentage	Cumulative		
SILT/CLAY	Silt/Clay	0.000	0.062			0		
	Very fine	0.062	0.125			0		
_	Fine	0.125	0.250			0		
SAND	Medium	0.25	0.50			0		
5'	Coarse	0.5	1.0	6	6	6		
	Very Coarse	1.0	2.0			6		
	Very Fine	2.0	2.8			6		
	Very Fine	2.8	4.0			6		
	Fine	4.0	5.6			6		
	Fine	5.6	8.0			6		
, Ar	Medium	8.0	11.0	6	6	12		
GRAVET	Medium	11.0	16.0	4	4	16		
•	Coarse	16.0	22.6	12	12	28		
	Coarse	22.6	32	8	8	36		
	Very Coarse	32	45	12	12	48		
	Very Coarse	45	64	14	14	62		
	Small	64	90	14	14	76		
alt	Small	90	128	14	14	90		
COBBLE	Large	128	180	4	4	94		
-	Large	180	256	2	2	96		
	Small	256	362	2	2	98		
e se	Small	362	512	2	2	100		
as a start and a start	Medium	512	1024			100		
φr.	Large/Very Large	1024	2048			100		
BEDROCK	Bedrock	2048	>2048			100		
			Total	100	100	100		

	Cross-Section 5									
Ch	annel materials (mm)									
D ₁₆ =	16.0									
D ₃₅ =	30.6									
D ₅₀ =	47.3									
D ₈₄ =	110.1									
D ₉₅ =	214.7									
D ₁₀₀ =	512.0									





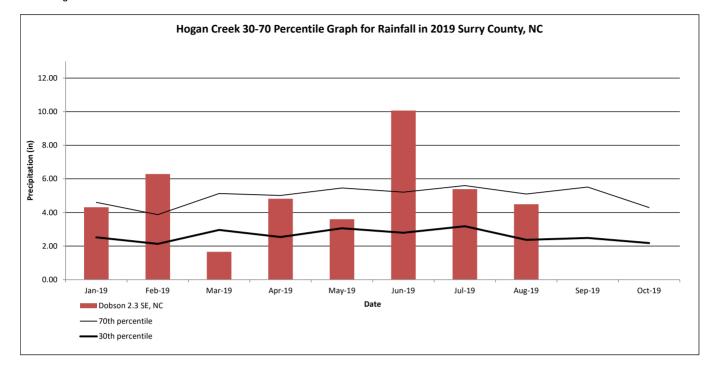
Hogan Reach 2, Cross-Section 6

		Diame	ter (mm)	Riffle 100-	Summary				
Par	ticle Class			Count	Class	Percent			
		min	max	Count	Percentage	Cumulative			
SILT/CLAY	Silt/Clay	0.000	0.062			0			
	Very fine	0.062	0.125			0			
_	Fine	0.125	0.250			0			
SAND	Medium	0.25	0.50			0			
5'	Coarse	0.5	1.0	2	2	2			
	Very Coarse	1.0	2.0			2			
	Very Fine	2.0	2.8			2			
	Very Fine	2.8	4.0			2			
	Fine	4.0	5.6			2			
	Fine	5.6	8.0			2			
Jer-	Medium	8.0	11.0			2			
GRAVEL	Medium	11.0	16.0			2			
	Coarse	16.0	22.6			2			
	Coarse	22.6	32	10	10	12			
	Very Coarse	32	45	4	4	16			
	Very Coarse	45	64	36	36	52			
	Small	64	90	24	24	76			
alt	Small	90	128	14	14	90			
COBBLE	Large	128	180	6	6	96			
-	Large	180	256			96			
	Small	256	362			96			
e and a second s	Small	362	512			96			
ø	Medium	512	1024			96			
v	Large/Very Large	1024	2048			96			
BEDROCK	Bedrock	2048	>2048	4	4	100			
			Total	100	100	100			

Care as Caretina C										
Cross-Section 6										
Channel materials (mm)										
45.0										
54.2										
62.8										
110.1										
170.1										
>2048										

APPENDIX E. Hydrology Summary Data and Plots

Table 14. Verification of Bankfull Events


Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

Reach	Monitoring Year	Date of Data Collection	Date of Occurrence	Method
	MY1*	10/26/2015	10/2/2015-10/3/2015	Crest Gage
	MY2	4/12/2016	4/1/2016-4/12/2016	Wrack Lines/Sediment Deposition
Hogan Creek Reach 2	MY3	7/5/2017	~5/22/2017-5/23/2017	Wrack Lines
	MY4	4/19/2018	~4/16/2018	Crest Gage/Wrack Lines
	MY5	3/14/2019	~2/23/2019-2/24/2019	Wrack Lines
	MY1	10/26/2015	10/2/2015-10/3/2015	Crest Gage
	MY2	8/2/2016	~ 6/16/2016	Crest Gage
UT2	MY2	4/12/2016	4/1/2016-4/12/2016	Wrack Lines/Sediment Deposition
012	MY3	7/5/2017	~5/22/2017-5/23/2017	Crest Gage/Wrack Lines
	MY4	4/19/2018	~4/16/2018	Crest Gage/Wrack Lines
	MY5	3/14/2019	~2/23/2019-2/24/2019	Crest Gage/Wrack Lines

*Crest Gage was damaged from bankfull event

Monthly Rainfall Data

Hogan Creek Stream Mitigation Project DMS Project No. 94708 Monitoring Year 5 - 2019

¹ 2019 rainfall collected from NC CRONOS Station Name: Dobson 2.3 SE, NC (NCSU, 2019)

 $^{\rm 2}$ 30th and 70th percentile rainfall data collected from weather station ELKIN, NC (USDA, 2019)

APPENDIX F. Invasive Species Treatment Logs

		Start		End	Start					20		191				
				1		Clear			1/1.	11207 1	Crew M	~ of 183	Crew	V. C.		
AREA			WIND CO			WEATHER O					Crew Members		Crew Leader		Client	T
COMPLETED			WIND CONDITIONS			P/C Cloudy										Hablat A
/COMMENT			49-46000			Foggy			-9	9	Hours	-0	н	4		Management Division
IS/RECOMN						Rain					urs		Hours	1220		and Restora Managem
AREA COMPLETED/COMMENTS/RECOMMENDATIONS FOR FOLLOWUP TREATMENT/SPEC	FLAT		17		Other	CUT and CHIP	HAND PULL		FOUAR SPRAY APPLICATION BP/TRACTOR w/tank/ATV w/tank	CUT and PAINT	METHOD	hours per ap	PRIMARY REMOVAL METHOD		Site	Habitat Assessment and Restoration Professionals Invasive Species Management Division
PECIAL NOTES OF CONDITIONS	$\frac{1}{2}$	181	AMBIENT TEMPERATURE						×			application method)		0	Start Time	
DITIONS									みな		# OF HOURS		(Separate	5	End Time	Date: 6 ~ 7 5 ~ / 4
	5 DENSE S STEEP			-		1	4,		!	<u> </u>				Ł	.I	

, · ·

1	T	ני		т <u> </u>		T -			,	- <u>-</u>		
	SPECIES TREA		DYE	SURFACTANT	HERBICIDE	DYE	SURFACTANT	HERBICIDE	DYE	SURFACTANT	HERBICIDE	
Eleagnus umbellata	E								7	Liberase	triclopyr	CHEMICAL
Ground Ivy	SPECIES TR									·02%	2,01	RATE OF APPLICATION
Ground Ivy Glechama hederacea	SPECIES TREATED (X species)									302	3002	TOTAL CONCENTRATION
Phragmites Phrogmites oustrolis	SPECIES TREATED (X species)										ld galles total	TOTAL SOLUTION

SPECIES TREATED (X species) Autum Olive Eleagnus un Burdock Arctiun Burdock Arctiun Burdock Arctiun Bush Euonymu Bush Euonymu Bush Euonymu Bush Bush Bush Buddleja Callery Pear Pyrus call	9 (X species) Eleagnus umbellata Arctium minus Euonymus alata le Lonicera spp. Buddleja davidii Pyrus calleryona
Bush Honeysuck	
Butterfly Bush	Buddleja davidii
Callery Pear	
China berry tree Chinese tallow to	China berry tree Mella azedarach
Chinese yam Di	Chinese yam Dioscorea appositifolia
Clematis	Clematris termifolia
Climbing ferns	Lygodium spp.
Cogon grass	Imperata cylindrica
Clown vetch	Securigera varia
English ivy	Hedero helix
Five leaf akebia	Akebia guinata
Garlic mustard	Alliaría petiolata
Golden bamboo	Golden bamboo Phyllostachys ourea

. ·

:

Vinca spp.	Periwinkle
PaperMulberryBroussonetic papyrifera	PaperMulb
Orient.bittersweet Celastrus orbieculotus	Orient.bitter
Nandia domestica	Nandina
Rose Rosa multiflora	Multiflora Rose
Albizia Julibrissin	Mimosa
te Vine Paly, perfolatum	Mile-A-Minute Vine
Lespadeza cureata	Lespedeza
Pueraria montano	Kudzu
Johnson Grass Sorghum haleperse	Johnson C
Jap.Skilt GrassMicrostegium vimnieum	Jap.Stilt Gra
a Spiroeo japonica	Jap. Spiraea
Jap.Knot weedPolygonum cuspidatum	Jap.Knot w
Humulus japonicus	Јар. Нор
Jap. Honeysuckle Lonicera japonica	Jap. Hone
Japanese Barberry Remeris thunbergli	Japanese E
y Glechama hederacea	Ground Ivy
SPECIES TREATED (X species)	SPECIES

V Chine Privet	Wisteria Wisterio spp.	Winter Creeper Euchymus fortnunei	Wineberry Rubus phoenicolasius	Willows Salix spp.	White Poplar Populus alba	White Mulberry Morus alba	Viburnum Virburnum spp	Tropical Soda App. Solenum viorum	Tree of Heaven Allanthus altissima	Tamarisk Tomorix spp.	Smart weed Polygonum spp.	Russlan Olive Eleagnus angustifolia	Purple toosestrife Lythrum salicaria	Porcellan Berry Ampelopsis brev	Phragmites Phrogmites oustrolis	SPECIES TREATED (X species)
4	erla spp.	; fortnunei	icolasius	alix spp.	vlus alba	orus alba	num spp.	m viarum	altissima	tarix spp.	num spp.	<i>rustifolia</i>	1 Salicaria	psis brev	s oustrolis	cies)

	End	Start	Start End	N. C	ha for	
		CALM	Clear		Crew Crew 1 Crew 1	
AREA	/	WIND CO 1-SMPH	WEATHER O		Crew Leader	
COMPLETED		WIND CONDITIONS 1-5MPH 6-10MPH	P/C Cloudy			Habitat /
COMMEN		11-15MPH	Foggy	9.	9 H 0 H	Itat Assessment and Restoration Professio
IS/RECOMM		GUSTING	Rain		Haurs A Hours	and Restora s Managen
AREA COMPLETED/COMMENTS/RECOMMENDATIONS FOR FOLLOWUP TREATMENT/SPEC	SITE CONDITION LIGHT 1 FLAT 1	START END	CUT and CHIP Other	FOLIAR SPRAY APPLICATION BPJTRACTOR w/tank/ATV w/tank HACK and SQUIRT HAND PULL	OVALM	Habitat Assessment and Restoration Professionals Invasive Species Management Division Invasive Species Management Site
ECIAL NOTES OF CONDITIONS	DNS INFESTATION AND TOPOGRAPHY	SIENT TEMPERATURE			ETHOD hours per application method) METHOD	Start Time
VITIONS	D TOPOGRAP			27	(Separate # OF HOURS	Date; -26 -19 End Time 5

Ų

DYE	SURFACTANT	HERBICIDE	DYE	SURFACTANT	HERBICIDE	DYE	SURFACTANT	HERBICIDE	
							Liberate	triclopyr	CHEMICAL
							0.20	2.05	RATE OF APPLICATION
							502	6002	TOTAL CONCENTRATION
							, , , , , , , , , , , , , , , , , , ,	24 aaton total	TOTAL SOLUTION

.

Golden bamboo Phyllostachys aurea	Garlic mustard Alligrig petiolato	Five leaf akebia Akebia quinata	English Ivy Hedera helix	Clown vetch Securigera varia	Cogon grass Imperata cylindrica	Climbing ferns Lygadium spp.	Clematis Clematris termifolia	Chinese yam Dioscorea oppositifolia	Chinese tallow tree Triadica sebifera	China berry tree Melia azedarach	Callery Pear Pyrus colleryono	Butterfly Bush Buddleja davidii	Bush Honeysuckle Lonicera spp.	Burning Bush Evonymus alata	Burdock Arctium minus	Autum Olive Eleagous unbeliato	SPECIES TREATED (X species)		SPECIES TREATED (X species) Autum Olive Eleaganus umbellato Burdock Arctium minus Burdock Arctium minus Burdock Arctium minus Burdock Arctium minus Burdock Euonymus alota Burning Bush Euonymus alota Bush Honeysuckle Lonicero spp. Butterfly Bush Buddigia davidii Callery Pear Pyrus colleryona China berry tree Mella azedarach Chinese tallow tree Triadica sebifera Chinese yam Dioscorea oppositifolia Clematis Clematris termifolia Clematis Clematris termifolia Clown yetch Securigera varia English IVy Hedera helix Five leaf alkebia Akebia quinata Garlic mustard Alliaria petiolata Golden bamboo Phyllostachys aurea
-----------------------------------	-----------------------------------	---------------------------------	--------------------------	------------------------------	---------------------------------	------------------------------	-------------------------------	-------------------------------------	---------------------------------------	----------------------------------	-------------------------------	---------------------------------	--------------------------------	-----------------------------	-----------------------	--------------------------------	-----------------------------	--	---

•

								K									
Periwinkle	PaperMulberry&	Orlent.bittersweet	Nandina	Multiflora Rose	Mimosa	Mile-A-Minute Vine	Lespedeza	Kudzu	Johnson Grass	Jap.Stilt GrassMic	Jap. Spiraea	Jap.Knot weed P	Јар. Нор	Jap. Honeysuc	Japanese Barbei	Ground lvy (SPECIES TRE
Vinco spp.	PaperMulberryBroussonctia popyrifero	Orlent.bittersweet Celustrus orbieculatus	Nandia domestica	e Rosa multiflora	Albizia julibrissin	e Poly perfoliatum	Lespodeza cureata	Pueraria montana	Sorghum haleperse	Jap.Stilt GrassMicrostegium vimnieum	Spiraea japonica	Jap.Knot weed Polygonum cuspidatum	Humulus japonicus	Jap. Honeysuckle Lonicero japonico	Tapanese Barberry Berberls thunborgil	Glechoma hederacea	SPECIES TREATED (X species)

\backslash																
Chinese Privet	Wisteria Wisteria spp.	Winter Creeper Euonymus fortnunei	Wineberry Rubus phoenicalasius	Willows Salix spp.	White Poplar Populus alba	White Mulberry Morus olba	Viburnum Virburnum spp.	Tropical Soda App. Solanum viarum	Tree of Heaven Allanthus altissima	Tamarisk Tomorix spp.	Smart weed Polygonum spp.	Russian Olive Eleognus angustifolia	Purple loosestrife Lythrum salicana	Porcelian Berry Ampelopsis brev	Phragmites Phragmites oustrolis	SPECIES TREATED (X species)

		End	Start			End	Start					Whit	berna		hee	3					
			\ بر	CALM				2				17	na l		s ala	Crew	141		0		
AREA				1-5MPH	WIND CO			WEATHER						Crew Members		Crew Leader	1	>	Client		
COMPLETE				6-10MPH	WIND CONDITIONS		Cioned	WEATHER CONDITIONS												Habitat . Inva	
AREA COMPLETED/COMMENTS/RECOMMENDATIONS FOR FOLLOWUP TREATMENT/SPEC							FORSY					9	9	H		Н				Habitat Assessment and Restoration Professionals Invasive Spacies Management Division	
NTS/RECOM				11-15MPH GUSTING										Hours	9	Hours	Hogan		C	t and Restor es Manazer	
MENDATIO		L	<u>r</u>	ł	<u> </u>	L	<u> </u>		1	L	- L	1	1	<u>I</u> 1		<u>. </u>	1		Site	ation Profe ment Divisi	
NS FOR FOL	FLAT	LIGHT					Other	CUT and CHIP		HAND PULL	HACK and SQUIRT	FOLIAR SP	CUT and PAINT			PRIMARY			ē	istonals ion	
LOWUP TRE		SI		END	5]		÷			SQUIRT	FOLIAR SPRAY APPLICATION	AINT			PRIMARY REMOVAL METHOD		-			
ATMENT/SP	1	SITE CONDITIONS INFESTATION AND TOPOGRAPHY		D	START							FOLIAR SPRAY APPLICATION BP/TRACTOR w/tank/ATV w/tank		METHOD	hours per a	METHOD					
	a A	DNS INFEST									-				hours per application method)		0	0	Start Time		
AL NOTES OF CONDITIONS	<u>u</u>	ATION AND		42								_			method)				me		<u> </u>
ITIONS	A	TOPOGRAF									,	27		# OF HOURS				ת	End Time		Date -27-19
														JURS		(Separate			ime		7-19
	EEP .	5 DENCE																			

-		.	1 -	T				1	-r	
SPECIES TREA	DYE	SURFACTANT	HERBICIDE	DYE	SURFACTANT	HERBICIDE	DYE	SURFACTANT	HERBICIDE	
SPECIES TREATED (X species)							V	Liberate	triclopr	CHEMICAL
							· · ·	0.2%	2%	RATE OF APPLICATION
COPCIES TOPATED /Y analish								209	600z	TOTAL CONCENTRATION
									24 gallon total	TOTAL SOLUTION

Autum Olive Fleagins un Burdock Arctiun Burning Bush Euonymu Bush Honeysuckle Lonice Butterfty Bush Buddleja a China berry tree Melia azer China berry tree Melia azer China berry tree Inadaco so Chinese tallow tree Triadico so Chinese tallow tree Triadico so Chinese tallow tree Triadico so Chinese tallow tree Triadico so Chinese tallow tree Triadico so Chinese tallow tree Triadico so Chinese tallow tree Triadico so Chinese tallow tree Triadico so Chinese tallow tree Triadico so Chinese tallow tree Triadico so Chinese tallow tree Triadico so Chinese tallow tree tall																		SF
to spice solution in the solution of the solut	Golden bamboo Phyllostachys aurea	Garlic mustard Alliorio petiolata	Five leaf akebia Akebia quinato	English ivy Hedera helix	Clown vetch Securigera varia	Cogon grass Imperata cylindrica	Climbing ferns Lygodium spp.	Clematis Clematris termifolio	Chinese yam Dioscorea oppositifalia	Chinese tallow tree Triadica sebifero	China berry tree Melia azedarach	Callery Pear Pyrus colleryono	Butterfly Bush Buddleja davldii	Bush Honeysuckle Lonicera spp.	Burning Bush Evonymus alata	Burdock Arctium minus	Autum Olive Eleaginus umbellata	SPECIES TREATED (X species)

• •

Vinco spp.	Periwinkte	
PaperMulberry&nussonetic popylfera	PaperMulberryan	
Orient. Alttersweet Celostrus or bleculatus	Orient.bittersweet	
Nandia domestica	Nandina	
Rosa multiflora	Multiflora Rose	
Albizia julibrissin	Mimosa	5
Poly. perfoliatum	Mile-A-Minute Vine	
Lespodeza cureata	Lespedeza	
Puerorio montana	Kudzu	
Sorghum haleperse	Johnson Grass	
Jap.Stilt GrassMicrostegium vimnieum	Jap.Stilt GrassMicro	
Spiraea japonica	Jap. Spiraea	
Jap.Knot weedPolygonuin cuspidatum	Jap.Knot weedPo	
Humulus Japonicus	Јар, Нор	
Jap. Honeysuckle Lonicera japonicu	Jap. Honeysuck	5
Japanese Barberry Berheris thunbergii	Japanese Barberr	
Glechama hederacea	Ground Ivy G	
SPECIES TREATED (X species)	SPECIES TRE/	

· •	M	8	5	5	N	8	<	T	T	I	5	R	P	P	P	SP
	Wisteria	Winter Creeper £	Wineberry Rub	Willows	White Poplar	White Mulberry	Viburnum	ropical Soda Ap	ree of Heaven A	Tamarísk	Smart weed	ussian Olive Elec	urple loosestrife	Porcelian Berry	Phragmites Ph	SPECIES TREATED (X species)
	Wisteria spp.	Euonymus fortnunei	Rubus phoenicolosius	Salix spp.	Populus alba	Morus albo	Virburnum spp.	Tropical Soda App. Solanum viarum	Tree of Heaven Allanthus altissima	Tamarix spp.	Polygonum spp.	Russian Olive Eleagnus angustifolia	Purple loosestrife Lythrum solicoria	Ampelopsis brev	Phrogmites oustrolis) (X species)

	End	Start	Stert End		Be	N	Peo		
		CALM	Clear		Bernal	whitt	Crew Crew	NC	
AREA		WIND CO	\	WEATHER		Crew Members	<u>Crew Leader</u> 5		Client
COMPLETED		WIND CONDITIONS 1-5MPH 6-10MPH	Cloudy	WEATHER CONDITIONS					Habibat /
)/COMMEN		11-15MPH	Foggy		9	~	- D∓		Habitat Assessment and Restoration Professionals Invasive Species Management Division Site
ITS/RECOM		GUSTING	Rain			Hours	Hours	Hogan	and Restor
AREA COMPLETED/COMMENTS/RECOMMENDATIONS FOR FOLLOWUP TREATMENT/SPEC	SITE CONDITION	START END		HAND PULL	FOLIAR SPRAY APPLICATION BP/TRACTOR w/tank/ATV w/tank HACK and SQUIRT	METHOD CUT and PAINT	PRIMARY REMOVAL METHOD hours per ap		fessionals fsion Site
ECIAL NOTES OF CONDITIONS	DNS INFESTATION		NEWT TEMOEDAT				application method)	8	Start Time
ONDITIONS	SITE CONDITIONS INFESTATION AND TOPOGRAPHY	5 82			a7	# OF HOURS	d) (Separate	5	6-28-19 End Time
	5 DENSE 5 STEEP			1					1 1 1 1 1 1 1 1 1 1 1

		<u> </u>	1		· · · · · · · · · · · · · · · · · · ·	T			1	1
SPECIES TREATED (X species)	DYE	SURFACTANT	HERBICIDE	DYE	SURFACTANT	HERBICIDE Me	DYE	SURFACTANT	HERBICIDE	
FED (X snecles)				7	Liberate	HERBICIDE Metsulturen mathy		Liberate	triclopyr	CHEMICAL
SPECIES T					0.2%	1 0.2%		0,3%	26	RATE OF APPLICATION
SDECIES TREATED (X sporias)					JOZ	2062		3oz	30 02	TOTAL CONCENTRATION
SDF/IES TOFATED /V enorise)						Sac llon			là aq/lon	TOTAL SOLUTION

•

.

•

Per	ded	Orie	Nar	Mu	Mir	Mile	Les	Kudzu	yar	; der	Jap	Jap.	Jap	Jap	sder	610	1 5
Periwinkle	PaperMulberryBroussmetia papyrifero	Orient.bittersweet Celastrus orhieculatus	Nandina No	Multiflora Rose	Mimosa A	Mäe-A-Minute Vine	Lespedeza Le		nson Grass Sor	Jap.Stilt GrassMicrostegium vimnieum	Jap. Spiraea Sy	Jap.Knot weedPolygonum cuspidatum	Jap. Hop Hun	Honeysuckle L	Japanese Barberry Berberis thunbergii	Ground Ivy Glect	SPECIES TREATED (X species)
Vinca spp.	unetia papyrifera	strus orbieculatus	Nandia damestica	Rosa multiflora	Albizia julibrissin	Poly, perfoliatum	Lespodeza cureata	Pueraria montana	Johnson Grass Sorghum haleperse	gium vimnieum	Spiraea japonica	num cuspidatum	Humulus joponicus	Jap. Honeysuckle Lonicero Japonico	srberis thunbergii	Glechoma hederacea	D (X species)
							0		10					7		7	

	Wisteria V	Winter Creeper Evonymus fortnunei	Wineberry Rubus ph	Willows	White Poplar I	White Mulberry	Viburnum Vir	Tropical Soda App. Solunum viorum	Tree of Heaven Ailanthus altissima	Tamarisk	Smart weed Po	Russian Olive Eleognus angustijulia	Purple loosestrife tythrum solicorio	Porcelian Berry Amp	Phragmites Phrogn	SPECIES TREATED (X species)
	Wisterio spp.	onymus fortnunei	Rubus phoenicolasius	Salix spp.	Populus alba	Morus alba	Virburnum spp.	Solanum vlarum	inthus altissima	Tomotix spp.	Polygonum spp.	nus angustifalia	ythrum salicoria	Ampelopsis brev	Phrogmites oustrolis	X species)

		End			End	Start					W	be1	>	Pec				
			CALM			1	Clear				Whitt	bernal	Crew N	eoples	Crew	VC	cii	
AREA		1	1-SMPH	WIND CO			P/C	WEATHER					Crew Members		Crew Leader		Client	
COMPLETE			6-10MPH	WIND CONDITIONS			Cloudy	WEATHER CONDITIONS										Habitat . Inva
D/COMMEN			11-15MPH				Foggy	5			Z	-	JI I	7	H			Habitat Assessment and Restoration Professionals Invasive Species Management Division
ITC/BECOM			I GUSTING				Rain						Hours		Hours	Hogan		and Restor
FLAT	LIGHT					1 ž		C	A	A	1 10	1 2 2	1	1		1	Site	- 2
1			END	START		Other		CUT and CHIP	HAND PULL	HACK and SQUIRT	FOLIAR SPRAY APPLICATION BP/TRACTOR w/tank/ATV w/tan	CUT and PAINT	METHOD	hours pe	PRIMARY REMOVAL METHOD			nais
			END 9	START START		her		T and CHIP	ND PULL	CK and SQUIRT	FOLIAR SPRAY APPLICATION BP/TRACTOR w/tank/ATV w/tank	UT and PAINT	METHOD	hours per application method)	RIMARY REMOVAL METHOD	0/	Start Time	nals

LIGHT	4	(2)	ω	4	5 DENSE
FLAT	<u> </u>	(2)	3	4	5 STEEP

•

.

	CHEMICAL	RATE OF APPLICATION	TOTAL CONCENTRATION	TOTAL SOLUTION
HERBICIDE	triclopyr	1%	15	12 gallon
SURFACTANT	Liberate	0.2%	ح	
DYE	-			
HERBICIDE				
SURFACTANT				
DYE				
HERBICIDE				
SURFACTANT				
DYE				

łS	SPECIES TREATED (X species)	(species)
	Autum Olive E	Eleagnus umbellata
	Burdock	Arctium minus
	Burning Bush	Euonymus alata
	Bush Honeysuckle	Lonicera spp.
	Butterfly Bush	Buddleja davidii
	Callery Pear	Pyrus calleryana
	China berry tree	Melia azedarach
	Chinese tallow tree Triadica sebifera	: Triadica sebifera
	Chinese yam Dioscorea oppositifolia	corea oppositifolia
	Clematis Cl	Clematris termifolia
	Climbing ferns	Lygodium spp.
	Cogon grass In	Imperata cylindrica
	Clown vetch	Securigera varia
	English Ivy	Hedera helix
	Five leaf akebia	Akebia quinata
	Garlic mustard	Alliaria petiolata
	Golden bamboo Phyllostachys aurea	hyllostachys aurea

, •

							1						Ĩ			
PaperMulberryß Periwinkie	Orient.bittersweet	Nandina	Multiflora Rose	Mimosa	Mila-A-Minute Vino	Lespedeza	Kudzu	Johnson Grass	Jap.Stilt GrassMics	Jap. Spiraea	Jap.Knot weedPc	Jap. Hop	Jap. Honeysuck	Japanese Barber	Ground lvy 6	SPECIES TRE
PaperMulberryBroussonetta popyrifera PeriwInkle Vinca soo.	Orient.bittersweet Celastrus arbieculatus	Nandia domestica	e Rosa multiflora	Albizia julibrissin	e Poly, performatum	Lespodeza cureata	Pueraria montana	Johnson Grass Sorghum holeperse	Jap.Stilt GrassMicrostegium vimnieum	Spiraea japonica	Jap.Knot weedPolygonum cuspidatum	Humulus Japonicus	Jap. Honeysuckle Lonicera japonica	Japanese Barberry Berberis thunbergil	Glechoma hederacea	SPECIES TREATED (X species)

k																IS
Privet	Wisteria Wisteria spp.	Winter Creeper Euonymus fortnunei	Wineberry Rubus phoenicolasius	Willows Salix spp.	White Poplar Populus albo	White Mulberry Morus alba	Viburnum Virburnum spp.	Tropical Soda App. Solanum viarum	Tree of Heaven Allanthus altissima	Tamarisk Tomorix spp.	Smart weed Polygonum spp.	Russian Ofive Eleagnus ongustifolia	Purple loosestrife Lythrum salicaria	Porcelian Berry Ampelopsis brev	Phragmites Phragmites oustrolis	SPECIES TREATED (X species)
	spp.	tnunei	lasius	spp.	alba	alba	1 spp.	viarum	ssima	r spp.	n spp.	folia	icaria	brev	strolis	5)

FOLIAR SPRAY APPLICATION	9	4
CUT and PAINT	9	Bernal
METH	Hours	Créw Members
nours	9	Peoples
PRIMARY REMOVAL METHOU	Hours	Crew Leader
U.	Hogan	NC
Site		Client
rofessionals livision	Habitat Assessment and Restoration Professionals Invasive Species Management Division	
		TARTA ASSESSMENT & REFERENCE AND PROFESSIONAL

Г		Da
9	Q	P.
1	2	,
1	0	
	1	
-	2	5

-

	2	
t Time End Time	Start Time	

tuhi	Berna	Crew	Peoples	Crev
H		Créw Members	les	Crew Leader
9	9	Hours	9	Hours

1			End	Start		
1	CALM				Clear	
	1-5MPH	WIND CC	1	1	P/C	WEATHER
Contraction of the local division of the loc	6-10MPH	WIND CONDITIONS			Cloudy	WEATHER CONDITIONS
Statement of the local division of the local	1-5MPH 6-10MPH 11-15MPH GUSTING				Foggy	s
	GUSTING				Rain	

Start End

1

CALM

PRIMARY REMOVAL METHOD hours per application method)	d) (Separate
METHOD	# OF HOURS
CUT and PAINT	1
FOLIAR SPRAY APPLICATION	るつ
HACK and SQUIRT	
HAND PULL	
CUT and CHIP	
Other	

SITE CONDITIONS	END	START	AMBIE
SITE CONDITIONS INFESTATION AND TOPOGRAPHY	88	70	AMBIENT TEMPERATURE

		(8)	0	*	D DEND
FIAT	-	12/	ω	4	5 STEEP

	FLAT	LIGUI
and the second se	1	7
and a second sec	(2)	CK
	ω	G.
	4	4
	5 STEEP	5 DENSE

1

AREA COMPLETED/COMMENTS/RECOMMENDATION

•

•

Stenade V DEVICE (Valuate)				Autom Olive
CDECIES TREATED (V anotaci	SPECIES TREATED (X eneries)	SPECIES TRI	SPECIES TREATED (X species)	SPECIES TRE/
				DYE
				SURFACTANT
				HERBICIDE
				DYE
				SURFACTANT
				HERBICIDE
			7	DYE
	Hoz	0.2%	Liberato	SURFACTANT
the an llon	2002	1%	triclopyc	HERBICIDE
TOTAL SOLUTION	TOTAL CONCENTRATION	RATE OF APPLICATION	CHEMICAL	

	0												-		-		SPE
Solden bamboo	Garlic mustard	Five leaf akebia	English Ivy	Clown vetch	Cogon grass	Climbing ferns	Clematis	hinese yam Dic	Chinese tallow to	China berry tree	Callery Pear	Butterfly Bush	Bush Honeysuckle	Burning Bush	Burdock	Autum Olive	SPECIES TREATED (X species)
Golden bamboo Phyllostachys aurea	Alliaria petiolata	Akebia quinata	Hedera helix	Securigera varia	Imperata cylindrica	Lygodium spp.	Clematris termifolla	Chinese yam Dioscoreo oppositifolio	Chinese tallow tree Triadica sebifera	Melia azedarach	Pyrus calleryana	Buddlefa davidii	le Lonicera spp.	Euonymus alata	Arctium minus	Eleagnus umbellata	(X species)

				1				<u> </u>		-					-		
Perlwinkle	aperMulberry8rou)rlent.bittersweet C	Nandina /	Multiflora Rose	Mimosa	Mile-A-Minute Vine	Lespedeza	Kudzu J	Johnson Grass S	ap.Stilt GrassMicros	Jap. Spiraea	ap.Knot weedPoly	Jap. Hop H	ap. Honeysuckle	apanese Barberry	Ground Ivy Gle	SPECIES TREA
Vinca spp.	PaperMulberryBroussonetia popyrifera	Orient.bittersweet Celastrus orbieculatus	Nandla domestica	Rosa multiflora	Albizla julibrissin	Poly. perfoliatum	Lespodeza cureata	Puerarla montana	Sorghum haleperse	Jap.Stllt GrassMicrostegium vimnieum	Spiraea japonica	Jap.Knot weed Polygonum cuspidatum	Humulus japonicus	Jap. Honeysuckle Lanicera japonica	Japanese Barberry Berbevis thunbergli	Glechoma hederacea	SPECIES TREATED (X species)

2									\setminus							S
Privet	Wisteria Wisteria spp.	Winter Creeper Euonymus fortnunei	Wineberry Rubus phoenicolasius	Willows Safix spp.	White Poplar Populus alba	White Mulberry Morus alba	Viburnum Virburnum spp.	Tropical Soda App. Solanum viarum	Tree of Heaven Ailanthus altissima	Tamarisk Tamarix spp.	Smart weed Polygonum spp.	Russian Olive Eleognus angustifolia	Purple loosestrife Lythrum salicaria	Parcelian Berry Ampelopsis brev	Phragmites Phragmites oustrolis	SPECIES TREATED (X species)

£

 \sim

~

Habitat Assessment and Restoration Professionals Invasive Species Management Division Processionals Processinal Second Procesionals <	Habitat Assessment and Restoration Professionals Invasive Species Management Division Invasive Species Management Division Invasive Species Management Division Ite Ste Invasive Species Management Division Ite Ite Invasive Species Management Division Ite Ite <th co<="" th=""><th>Habitat Assessment and Restoration Professionals Invasive Species Management Division Invasive Species Management DivisionInvasive Species Management Div</th><th>Habitat Assessment and Restoration Professionals Invasive Species Management Division lent Ste Leader Hours Leader Hours Leader Hours PS Hours Leader Hours Members Hours VEATHER CONDITIONS Implement Cloudy Rain P/C Cloudy Foggy Rain VIND CONDITIONS Implement Cloudy Cut and SQUIRT MACK and SQUIRT HACK and SQUIRT HACK and SQUIRT HACK and SQUIRT HACK and SQUIRT Ste UND CONDITIONS Ste LIGHT Ste Structure Ste</th><th></th><th></th><th>End .</th><th>Start</th><th>CALM</th><th></th><th>End</th><th>Clear</th><th></th><th></th><th>•</th><th>Whit</th><th>Bernal</th><th>. Cre</th><th>Peoples</th><th>> 0</th><th>N</th><th></th><th></th></th>	<th>Habitat Assessment and Restoration Professionals Invasive Species Management Division Invasive Species Management DivisionInvasive Species Management Div</th> <th>Habitat Assessment and Restoration Professionals Invasive Species Management Division lent Ste Leader Hours Leader Hours Leader Hours PS Hours Leader Hours Members Hours VEATHER CONDITIONS Implement Cloudy Rain P/C Cloudy Foggy Rain VIND CONDITIONS Implement Cloudy Cut and SQUIRT MACK and SQUIRT HACK and SQUIRT HACK and SQUIRT HACK and SQUIRT HACK and SQUIRT Ste UND CONDITIONS Ste LIGHT Ste Structure Ste</th> <th></th> <th></th> <th>End .</th> <th>Start</th> <th>CALM</th> <th></th> <th>End</th> <th>Clear</th> <th></th> <th></th> <th>•</th> <th>Whit</th> <th>Bernal</th> <th>. Cre</th> <th>Peoples</th> <th>> 0</th> <th>N</th> <th></th> <th></th>	Habitat Assessment and Restoration Professionals Invasive Species Management Division Invasive Species Management DivisionInvasive Species Management Div	Habitat Assessment and Restoration Professionals Invasive Species Management Division lent Ste Leader Hours Leader Hours Leader Hours PS Hours Leader Hours Members Hours VEATHER CONDITIONS Implement Cloudy Rain P/C Cloudy Foggy Rain VIND CONDITIONS Implement Cloudy Cut and SQUIRT MACK and SQUIRT HACK and SQUIRT HACK and SQUIRT HACK and SQUIRT HACK and SQUIRT Ste UND CONDITIONS Ste LIGHT Ste Structure Ste			End .	Start	CALM		End	Clear			•	Whit	Bernal	. Cre	Peoples	> 0	N		
Habitat Assessment and Restoration Professionals Invasive Species Management Division Site Hours Hours Hours Hours Hours Hours Hours PRIMARY REMOVAL Hours CUT and PAINT FOLUAR SPRAY APPI CUT and PAINT FOBBY CUT and SQUIRT HACK and SQUIRT HAND PULL CUT and CHIP Other LIGHT LIGHT	Habitat Assessment and Restoration Professionals Invasive Species Management Division Site Hours Hours Hours PRIMARY REMOVAL Hours CONDITIONS CONDITIONS CONDITIONS CONDITIONS H 6-10MPH 11-15MPH GUSTING HAND PULL LIGHT LIGHT RECONDITIONS CONDITIONS HAND PULL LIGHT LIGHT	Habitat Assessment and Restoration Professionals Invasive Species Management Division Site Hours Hours Hours Hours Hours Hours Hours Hours Hours CUT and PAINT FOLIAR SPRAY REMOVAL CUT and PAINT FOLIAR SPRAY APPLI CUT and SQUIRT HACK and SQUIRT HACK and SQUIRT HARC CONDITIONS CUT and CHIP CUT and CHIP LIGHT HARC CONDITIONS LIGHT HARC CONDITIONS LIGHT LIGHT LIGHT	Habitat Assessment and Restoration Professionals Ste Ste Stert Time End T Invasive Species Management Division Hours Ste Stert Time End T Hours PRIMARY REMOVAL METHOD Hours hours per application method] Hours METHOD End T Hours METHOD End Time						WI	1	1	WEAT			itt	a	w Membe	les	rew Leade	0	Client		
Assessment and Restoration Professionals sive Species Management Division Site	Assessment and Restoration Professionals sive Species Management Division Site	Assessment and Restoration Professionals sive Species Management Division Site	Assessment and Restoration Professionals sive Species Management Division sive Species Management Division Hours H	AREA CO				-	ND CONI		IC	THER CO					515						
sessment and Restoration Professionals ve Species Management Division Site Si	sessment and Restoration Professionals ve Species Management Division Site Site Hours Hours Hours Hours Hours Hours Hours Hours Site Hours Prive Rain HACK and SQUIRT HACK and CHIP Other HAT	sessment and Restoration Professionals ve Species Management Division Site Image: Site Hours Hours Hours Hours Image: Stee Hours Image: Stee Hours Image: Stee Image: Stee <tr< td=""><td>sessment and Restoration Professionals Site Start Time End T Indext Start Time End T Hours Start Time End T Hours Start Time End T Hours PRIMARY REMOVAL METHOD Hours per application method! Hours and PAINT FOREY METHOD # OF H CUT and CHIP AMBIENT TEMPERATURE STE CONDITIONS INFESTATION AND TOPOGE LIGHT 1 A A</td><td>INDIFT</td><td></td><td></td><td></td><td>-10MPH</td><td>DITIONS</td><td></td><td>Cloudy</td><td>NDITIONS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>labitat A</td></tr<>	sessment and Restoration Professionals Site Start Time End T Indext Start Time End T Hours Start Time End T Hours Start Time End T Hours PRIMARY REMOVAL METHOD Hours per application method! Hours and PAINT FOREY METHOD # OF H CUT and CHIP AMBIENT TEMPERATURE STE CONDITIONS INFESTATION AND TOPOGE LIGHT 1 A A	INDIFT				-10MPH	DITIONS		Cloudy	NDITIONS										labitat A	
nd Restoration Professionals Site	Ind Restoration Professionals Management Division Star Site Star Site Star Ind GUT PRIMARY REMOVAL METHOD hours per application Ins METHOD hours per application Ins METHOD hours per application Ins METHOD (UT and PAINT FOLUAR SPRAY APPLICATION BP/TRACTOR w/tank/ATV w/tank Riain CUT and CHIP GUSTING SITE CONDITIONS INFI- LIGHT SITE CONDITIONS INFI- LIGHT SITE CONDITIONS INFI- 1	Ind Restoration Professionals Management Division Site Site Site Site Site Site Site Sit	Start Time End T Start Time End T plication method) # OF H # OF H	- ICONASAEN				11-15MPH			Foggy				6	6	Hot	6	Hot			ssessment a ive Species	
tion Professionals ent Division Site PRIMARY REMOVAL MET FOLIAR SPRAY APPLICATIO FOLIAR SPRAY APPLICAT	tion Professionals Ite Site Star Site Star Site Star GUT and PRIMARY REMOVAL METHOD FOLLAR SPRAY APPLICATION STEE CONDITIONS INFE FOLT AND FOLL FOLL FOLT AND FOLL FOLL FOLL FOLL FOLL FOLL FOLL FOLL	tion Professionals International State Time Site Site Site Site Site Site Site Sit	Start Time End T Start Time End T plication method) # OF H # OF H	TE DECOM				GUSTING			Rain						2/I		SII	H		nd Restora Managem	
	HOD THOD THOD SN THOD SN TW/Eank SN TW/Eank	HOD HOD ITHOD ITHOD AMBIENT TEMPERATURI AMBIENT TEMPERATURI	Start Time End T Start Time End T plication method) # OF H # OF H		FLAT			END	START	Other		CUT and CHIP	HAND PULL	HACK and SQUIRT	FOLIAR SPRAY APPLICATIO	CUT and PAINT	M	ho	PRIMARY REMOVAL METI	n	Site	rrofessionals Division	

DENSE

٦		1	1		— —	<u> </u>	[
	DYE	SURFACTANT	HERBICIDE	DYE	SURFACTANT	HERBICIDE	DYE	SURFACTANT	HERBICIDE	
								Liberate	triclopyr	CHEMICAL
								0,1%	1%	RATE OF APPLICATION
								602	300cm	TOTAL CONCENTRATION
							· · ·		24 gallons	TOTAL SOLUTION

SP	SPECIES TREATED (X species) Autum Olive <i>Eleognus un</i> Burdock Arctun	(X species) Eleognus umbellata Arctium minus
	Burning Bush	Euonymus alata
	Bush Honeysuckle	le Lonicera spp.
	Butterfly Bush	Budaleja davidii
	Callery Pear	Pyrus calleryana
	China berry tree	Mella azedarach
	Chinese tallow tr	Chinese tallow tree Triadica sebifera
	Chinese yam Dic	Chinese yam Dioscored oppositifolia
	Clematis	Clematris termifolia
	Climbing ferns	Lygodium spp.
	Cogon grass	Imperata cylindrica
	Clown vetch	Securigera varia
	English ivy	Hedero helix
	Five leaf akebia	Akebia quinata
	Garlic mustard	Alliaria petiolata
	Golden bamboo	Golden bamboo Phyllostachys aurea

4

				٢				7							_		
Periwinkle	PaperMulberryBroussonetia papyrifera	Orient.bittersweet G	Nandina /	Multiflora Rose	Mimosa	Mile-A-Minute Vine	Lespedeza	Kudzu F	Johnson Grass S	Jap.Stilt GrassMicrostegium vimnieum	Jap. Spiraea	ap.Knot weedPoly	Jap. Hop H	lap. Honeysuckle	Japanese Barberry Berberls Munbergli	Ground ivy Gle	SPECIES TREAT
Vinca spp.	ussonetia papyrifera	Orient.bittersweet Celastrus arbieculatus	Nandia domestica	Rosa multiflora	Albizia julibrissin	Poly. perfoliatum	Lespodeza cureata	Puerana montana	Johnson Grass Sorghum holeperse	tegium vimnieum	Spiraea japonica	Jap.Knot weedPolygonum cuspidatum	Humulus japonicus	Jap. Honeysuckle Lonicera japonica	Berberls thunbergil	Glechoma hederacea	SPECIES TREATED (X species)
				7			ta		R					9		2	

<									5							Ś
Privet	Wisteria Wisteria spp.	Winter Creeper Euonymus fortnunei	Wineberry Rubus phoenicolasius	Willows Salix spp.	White Poplar Populus albo	White Mulberry Morus alba	Viburnum Virburnum spp.	Tropical Soda App. Solanum viorum	Tree of Heaven Allanthus altissima	Tamarisk Tamarix spp.	Smart weed Polygonum spp.	Russian Olive Eleagnus angustifolio	Purple loosestrife Lythrum salicaria	Porcelian Berry Ampelopsis brev	Phragmites Phrogmites oustrolis	SPECIES TREATED (X species)

.